ABOUT JYOTI LTD: COMPANY PROFILE

Jyoti Ltd., a leading engineering company, is offering high quality products and services to clients in India and in the international market. Established in 1943, today Jyoti Ltd. is serving the vital fields of national and international economy such as:

- Power (Thermal, Hydel & Nuclear) Generation, Transmission and Distribution,
- Agriculture, helping irrigation through pumping systems,
- Water supply & Sewerage schemes,
- Defence-particularly Naval & Marine Establishments,
- Railways,
- Core industries like Steel, Cement, Paper, Sugar, Fertilizers, and Chemicals & Petrochemicals.

Jyoti offers a wide range of quality products and services conforming to Indian and International standards.

Jyoti has received ISO-9001 Certification for establishing and applying Quality Systems for design, development, manufacture and servicing of its Pumps, Switchgears, Generators, Motors and Hydro Turbines.

The products and Services we offer include:

- Medium & Large pumps,
- Hydro-Electric Generating Systems,
- L.T. & H.T. Alternators
- L.T. & H.T. Motors
- Special Rotating Electrical Machines like Arno Convertors, Sugar Centrifuge Motors, Frequency Convertors etc.,
- Medium voltage Switchboards & Switchgear,
- Electronics & Control Systems,
- Jyoti assumes single-source responsibility for implementing Turn-Key Projects.
- Jyoti Pro/ENGINEER Design Service Centre offers CAD/ CAM / CAE solution to improve engineering processes.

The wide range of products and services offered are engineered by different product and service groups manned by competent professional specialising in their respective fields. Jyoti has a countrywide marketing network of Zonal & Branch offices and System Houses. System Houses serve, as an extended arm of the network catering to the complete technical and commercial needs of customers. They draw on all the strengths of Jyoti brand image, technical expertise and engineering support. They all are backed up by well-equipped customer services available at authorised service centres as well as at Zonal & Branch Offices. With opening up economy, the Export Division has intensified its operations in the international market. In order to meet the growing demand of 'Jyoti Switchboards in Gulf countries, a unit to manufacture medium voltage switchboards has been set up at Sohar, in Oman. This unit, Jyoti Sohar Switchgear LLC is a joint venture between Jyoti Ltd. and OMZEST Group of Muscat.

'Jyoti' Products, which meet stringent requirements of Core Sectors of Indian and Global economy, have been developed at Jyoti R&D Centre through market-oriented research. First of its kind to be set up in Private Sector in 1964, the R&D Centre has produced a capability to cater to changing market needs through a planned, focused and cost effective Research and Development. The basic philosophy is to preserve and enhance. 'Core competence' in technology development to maintain competitiveness in Global Market. The company has received several National awards for Imports Substitution from Government of India. The company has also received prestigious awards from Institutions like Associated Chambers of Commerce and Industry of India (ASSOCHAM), Federation of Indian Chambers of Commerce and Industry (FICCI) and Confederation of India Industry (CII), for its pioneering efforts in developing indigenous technology.

Jyoti has won the Award from International Association for Small Hydro for its outstanding contribution as equipment manufacturer for development of Small Hydro Power (SIP) in India recognition from IREDA for outstanding contribution to renewable energy sector.

Jyoti has set up a Pro/ENGINEER Design Service Centre, the first of its kind in the Western region of the country. The Centre aims at Virtual Engineering by providing CAD / CAM / CAE solutions i.e. to improve designs, manufacturing processes and enhance the product quality on the one hand and reduce cost and time on the other.

Though Jyoti's corporate philosophy is to develop indigenous technology, Jyoti Imports technical know-how on a selective basis with a view to update its own technological base and remain competitive. Jyoti has entered into technical collaboration with leading foreign firms for manufacturing of various products. At present, it has technical collaboration with Toshiba Corporation, Japan for manufacture of Vacuum Circuit Breakers. Jyoti has entered into technical collaboration with Jeumont Industries, France to manufacture High Voltage Alternators for Steam / Gas Turbine duty. In cooperation with Turbo-Institute, Slovenia, Jyoti aims to offer a wide range of runners and improved designs of Small Hydel Sets.

Being an integral part of the society, Jyoti is deeply conscious of its obligations and responsibility towards society. Jyoti has played a major role in rehabilitating the handicapped by providing training and assisting various voluntary organisations and encouraging own employees to participate in areas like promotion of renewable sources of energy, preservation of environment, voluntary blood donation programmes, vocational training for rural and urban youth and integrated rural development programmes. Jyoti has received prestigious awards for these efforts from Government of India and FICCI.

QUALITY & COMPLIANCE

GENERAL:

Quality Assurance of L.T. motors designed, manufactured, marketed and serviced by Jyoti Ltd. is broadly divided into three categories:-

- a) Design Quality
- b) Conformance Quality
- c) Performance Quality

d) **DESIGN QUALITY**:

The final design released from design department to manufacturing department is based on valuable inputs from the experienced engineers from various departments viz. Standard Dept., Quality Dept., Manufacturing Dept., Customer Service Dept., Marketing Dept., as indicated below:-

- a) Standard Department ensures that materials, standards & tolerances for components and the products are as per work standard, national or international standards.
- b) R & D Department specifies quality standards based on performance requirements and information on past field complaint. The criticalities of various components are also taken into account.
- c) Manufacturing Department examines the design in terms of capabilities of the existing machine tools and other manufacturing processes to achieve the dimensions and tolerances indicated.
- d) Customer Services Department examines the design from the viewpoint of ease of erection, maintenance and servicing.
- e) Marketing Department examines the design from the viewpoint of market feedback and customer's existing requirements.

> CONFORMANCE QUALITY:

Planning for conformance quality by manufacturing involves the following stages.

- a) Vendor selection and development for supply of raw materials, components and fabrication to meet the standards laid down in the bill of materials, drawings, etc. is done by Purchase Department with the help of engineers in Manufacturing, Quality & R&D personnel.
- b) Product engineering group does preparation of process charts. The information on the process sheets is transferred on job cards for each component in order to manufacture components as per the process sequence and methods indicated on the job cards.

Verification of the conformance quality is done at various stage of manufacturing as indicated below:

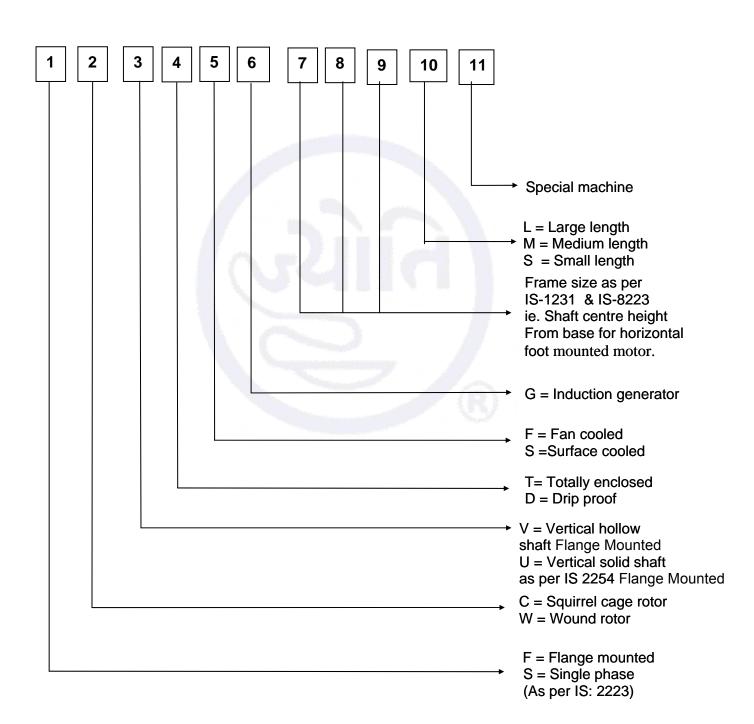
- I. Inspection of incoming material
- II. Stage Wise in-process inspection
- III. Sub-assembly & assembly inspection viz. stator assembly, rotor assembly and complete assembly etc.

The real quality of any machine can be seen in its performance, that is why we pay close attention to customer's comments. From the moment you place your order until the motor is up and running, we keep you informed and involved. Our own Procedures are constantly under review. All our staff are involved in continuous training programs to help them to serve you better, and increased skills bring

Increased motivation. At JYOTI, we think that it is vital for our customers to know the importance we attach to quality. It is a reality that inspires each employee to give his best.

MILE STONE

\rightarrow	First motor manufactured at Jyoti ltd.	- 1948
\rightarrow	vertical motors for V.T.pumps	- 1955
\rightarrow	TEFC motors	- 1955
\rightarrow	First slipring motors (168kW/12P)	- 1955
\rightarrow	Arno convertor (120 KVA) for Railways	- 1965
\rightarrow	PAM motor was introduced under collaboration of BTG UK	- 1986
\rightarrow	L.T. CACA motor for Chanderpur	- 1986
\rightarrow	Standard motors with Class 'F' insulation	- 1995
\rightarrow	Windmill generator up to 400 kw (Single / Dual speed)	- 1996
\rightarrow	Vertical TEFC series motors up to frame size 355	- 1998
\rightarrow	Auxiliary motors for Railways (WAG - 9)	- 1999
\rightarrow	TEFC - 2 pole & 8 pole series motors	- 2000
\rightarrow	TEFC Slip Ring Motor	- 2000
\rightarrow	Electric motor for Transport Bus Vehicle (Inverter Fed)	- 2001
\rightarrow	Flange Mounted Dual Speed Generator	- 2001
\rightarrow	Dual Speed (8P/16P) Motor for Defence	- 2006
\rightarrow	750/200kW Dual Speed Generator	- 2009
\rightarrow	10 Pole TEFC series Motors	- 2010
\rightarrow	Efficiency - 1 Motors	-2010


REFERENCE STANDARDS

NATIONAL STANDARDS & EQUIVALENT INTERNATIONAL STANDARDS

	National	International	British
Three phase Induction motors	IS:325	IEC 34-1	BS 5000
Rotating Electrical Machines	IS:4722	IEC 34	BS 4999
Type of duty & classes of rating assigned to rotating electrical Machines	IS:12824	IEC 34-1	BS 4999
Method of determination of efficiency of rotating electrical Machines	IS:4889	IEC 34-2	BS 4999
Degree of protection provided by enclosure for rotating Electrical machines	IS:4691	IEC 34-5	BS 4999
Designation of methods of cooling of rotating Electrical machines	IS:6362	IEC 34-6	BS 4999
Designation for types of construction and mounting Arrangements of rotating electrical machines	IS:2253	IEC 34-7	BS 4999
Terminal marking & Direction of rotation for rotating Electrical machines	IS:4728	IEC 34-8	BS 4999
Permissible limits of Noise levels for rotating electrical Machines	IS:12065	IEC 34-9	BS 4999
Mechanical vibration of rotating electrical machines with Shaft height 56 mm & higher-measurement, evaluation & limits of vibration severity.	IS:12075	IEC 34-14	BS 4999
Dimensions of foot mounted Induction motors	IS:1231	IEC 72	BS 5000
Dimensions of Flange mounted Induction motors	IS:2223	IEC 72-1	BS 4999
Dimensions and output ratings for foot mounted electrical Machines with frame 355 and above	IS:8223	IEC 72-1	BS 4999
Thermal evaluation and classification of electrical insulation.	IS:1271	IEC 85	BS 5000
Dimensions of vertical shaft motors for pumps	IS:2254		
Guide for testing three phase induction motors	IS:4029	IEC 34	
Guide for testing insulation resistance of rotating machines	IS:7816		
Temp. Rise measurement of rotating electrical machines	IS:12802		
Classification of degree of protection provided by enclosure Of electrical equipment.	IS:12063		
Guide on effects of unbalanced voltage on the performance Of 3 phase squirrel cage motors	IS: 13529	IEC892	
Induction motor -Energy efficient 3 phase, squirrel cage	IS:12615		
Three phase squirrel cage Induction motors for centrifugal Pumps for agricultural applications	IS:7538		
Values of performance characteristics for 3 phase Induction Motors.	IS:8789		
Recommendations for the dimensions and output rating of Electric motors- Flange mounting	IS:14568	IEC 72-2	
Code of practice for installation and maintenance of Induction Motors	IS:900		
Motors for Submersible pump sets	IS:9283		
Increased Safety Motors (Type 'e' Motor)	IS:6381		
Impulse withstand load of REM with form wound Stator coil	IS:4222		

NOMENCLATURE OF JYOTI L.T. INDUCTION MOTORS

	С		T	F	G	2	8	0	L
	С		T	F		3	1	5	M
F	С	V	Т	F		3	5	5	S

TOLERANCE ON MAIN PERFORMANCE PARAMETERS

TOLERANCES FOR ELECTROMECHANICAL CHARACTERISTICS IEC 34-1 or BS 4999 or IS 325 specifies standard tolerances for electromechanical characteristics

Parameters	Tolerances
Efficiency Machines P≤ 50 kW Machines P > 50 kW	-15%(1-η)
$\begin{cases} Machines P > 50 \text{ kW} \end{cases}$	-10%(1-η)
Total losses above 50 kW Motor	+10%
Power factor (CosΦ)	-1/6(1- cosΦ)
	(Min. 0.02-max. 0.07)
Slip	±20% of guaranteed value
Locked rotor torque (Break away torque)	-15%,+25% of guaranteed value
Locked rotor current (Break away current)	+20% of guaranteed value
Pull out torque	-10% of guaranteed value
Rotor voltage	± 10% of guaranteed value
Moment of Inertia (also GD ²⁾	±10% of guaranteed value

Note: Tolerances on following parameters are as per Jyoti standard

Vibration	+10% of guaranteed classification
Noise	+3 dB (A) over guaranteed value

Mechanical Tolerances:

The standard tolerances shown below are applicable to the drawing dimensions given in our catalogues. They fully comply with IEC standard 72-1/IS-1231 & IS-2223.

Dimensions	Tolerances
Frame size $H \le 250$	0 - 0.5 mm
≥ 280	0 - 1.0 mm
Diameter ϕ of shaft extension:	
11 to 28 mm	j6
32 to 48 mm	k6
55 mm and over	m6
Diameter N of flange spigot:	j6 up to F500B
Key width:	h9
Width of drive shaft key way (Normal keying)	N9
Key depth: -rectangular section	h11
Concentricity of spigot diameter and perpendicularity of mating surface of	
flange in relation to shaft	
F55 to F115	0.08 mm
F130 to F265	0.10 mm
F300 to F500	0.125 mm
Eccentricity of shaft in flanged motors (Standard class)	
- diameter > 10 up to 18 mm	0.035 mm
- diameter > 18 up to 30 mm	0.040 mm
- diameter > 30 up to 50 mm	0.050 mm
- diameter > 50 up to 80 mm	0.060 mm
- diameter > 80 up to 120 mm	0.070 mm

ENVIRONMENT

NORMAL OPERATING CONDITIONS:

Under IEC 34-1, BS 4999 or IS 325 standard motors must be able to operate under the following conditions:

- Ambient temperature between 15°C and +50°C inclusive
- Altitude under 1000M
- Atmospheric pressure 1050 mbar

DERATING FACTORS:

For different operating conditions other than those mentioned above, apply the following derating factors.

Ambient temperature °C	Approx. derating factor
50	1.00
55	0.88
60	0.83

Altitude above MSL (M)	Approx. derating factor
1000	1.00
1500	0.95
2000	0.91
2500	0.87
3000	0.83
3500	0.79
4000	0.74

Variation in voltage	Variation in frequency	Combined variation	Derating factor
±10 %	±5 %	±10 %	1.0
+10%, -15%	±5 %	+10%,-15%	0.90
±15% ±5 %		±15%	0.85

RELATIVE HUMIDITY :

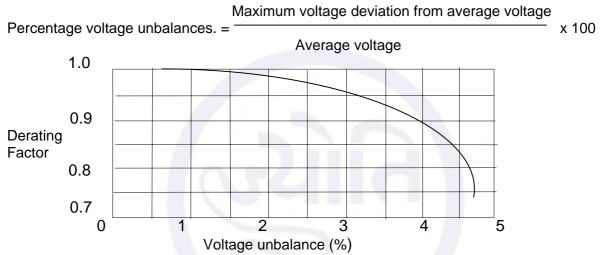
Above 50% relative humidity either TEFC motors are to be used or open type motors with proper protective coating to be used. If relative humidity is 90% & above then TEFC motors with tropical coating over winding are provided against condensation of moisture.

DRAIN HOLES:

Holes are provided in motors of frame size 225 and above at the lowest points of the Totally Enclosed Fan Cooled machine enclosure to drain off any moisture condensation that may have accumulated inside. After draining the moisture the plugs must be refitted, in order to maintain IP55 protection.

DRIP COVER (CANOPY COVER) :

For machines operating vertically outdoors, with the drive shaft downwards, canopies are used.


SUPPLY CONDITIONS

> VOLTAGE & FREQUENCY RATING:

Our standard motors are designed for operation at 415 Volt, 50 Hz, 3 phase AC supply. Motors for other voltages and frequencies will be available on request. Jyoti motors are suitable for a voltage variation of $\pm 10\%$ and frequency variation of $\pm 5\%$. In case of continuous operation at extreme voltage limits, the temperature rise limit can exceed by 10° C. Motors when operated under the extreme condition of voltage and frequency variation may not necessarily have their performance in accordance with above standards.

UNBALANCE VOLTAGE :

Standard motors are capable of operating under condition of supply voltage unbalance not exceeding 1% for long period or 2% for short period. Motors required operating at voltages and frequency variations other than specified by above standard can be supplied on request. A motor user from the voltage readings of the three phases can determine the percentage voltage unbalances.

TYPICAL DERATING FACTOR DUE TO UNBALANCED VOLTAGES

In some applications, greater unbalance than that permitted by IS may be unavoidable, and some derating of the motor might be necessary to reduce the possibility of damage due to overheating. Typical values of derating of single speed three-phase cage Induction motors, rated up to 650V are shown in the fig. above.

EFFECT OF VARIATION OF VOLTAGE & FREQUENCY ON THE CHARACTERISTICS OF MOTOR:

CHARACTERISTICS	VOLTAGE		FREQUENCY	
	110%	90%	105%	95%
TORQUE				
Starting & Maximum	+21%	-19%	-10%	+11%
SPEED				
Synchronous	No change	No change	+5%	-5%
Full load	+1%	-1.5%	+5%	-5%
CURRENT				
No- load	+(10 to 15) %	-(10 to 12)%	-(5 to 6)%	+(5 to 6)%
Starting	+(10 to 12)%	-(10 to 12)%	-(5 to 6)%	+(5 to 6)%
Full-load	-7 %	+11%	No majo	r change
Temperature rise	-3 to 4 °C	+6 to 7 °C	No majo	r change
Over load capacity	+21 %	-19 %	No majo	r change
Magnetic Noise	No majo	r change	No majo	r change
FL. Efficiency (%)	+0.5 to 1%	-2%	No majo	r change
FL. Power factor (%)	-3 %	+1%	No majo	r change

Note: The data given above are for general guidance only.

ELECTRICAL FEATURES

> RATED SPEED/SLIP:

The rated speed corresponds to the speed at which the motor runs with rated load. The speed of an a.c. Motor depends on mains frequency and number of poles of stator windings.

Where speed Ns = $2 \times F \times 60$ rpm. This is the synchronous speed.

Ρ

F = Frequency of the supply system and <math>P = No. of poles.

The synchronous speed can never be reached by squirrel cage or slip ring Induction motors. At no-load, however, the speed is practically equal to the synchronous speed; at rated output speed (N) is slightly lower. The slip is the difference between the synchronous speed and the rated speed of the motor expressed as a percentage of the synchronous speed. Normally for partial loads, slip varies proportionally with the output.

% slip
$$= \frac{\text{Ns - N}}{\text{Ns}} 100$$

> RATED CURRENT:

It is the current drawn by the motor when running with rated load and at rated supply conditions. The rated current given in performance data is for 415V supply. For motors designed to suit other voltages like 440V, 400V, 380V, the rated current is given by

$$I = \frac{Vr}{V} \times Ir$$

Where

Ir = rated current at rated voltage Vr (Vr = 415 V)

= rated current at required voltage V

The current drawn by a motor varies with load, though no linear relationship exists.

DIRECTION OF ROTATION:

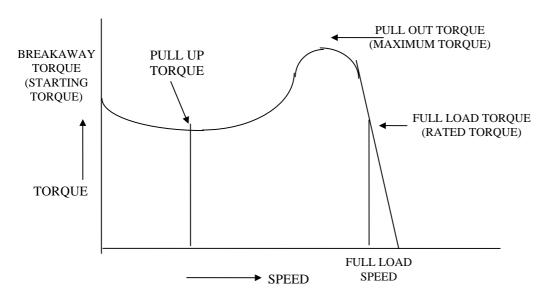
If the mains supply is connected to the stator terminals marked U, V & W of a three-phase motor, and the phase sequence of the mains is L1, L2, L3, the motor will rotate clockwise as viewed from the drive end. For opposite direction of rotation, interchange two of the three wires connected to the stator switch or the motor.

> OVERLOAD:

Standard motors are designed to withstand overload up to 1.6 times of their rated torque for 15 seconds without stalling or abrupt change in speed at rated supply conditions. Standard Motors are not suitable for continuous overload.

MOTOR TORQUE:

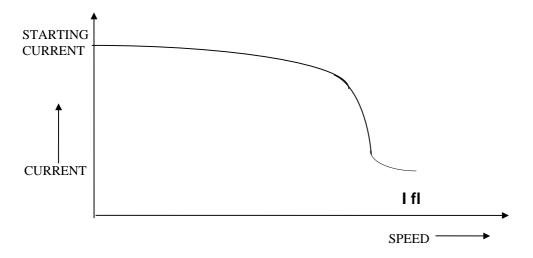
The torque of a motor is a measure of its turning ability. If the power and the speed are known it is easy to calculate the torque. At the periphery of a pulley there is a certain force in the belt is generated in running motor see figure .The product of force F and the radius of the pulley r is the torque T of the motor.


Pulley F

During the acceleration of a squirrel cage Induction motor the torque of the motor first droops slightly (T _{pull-up}) but then rises to its maximum (T_{pullout}). In normal motors the maximum torque occurs at 85 to 90% of full load speed. At synchronous speed zero torque is developed.

Jyoti standard squirrel cage induction motors are designed to develop high starting torque at reasonable starting current. For DOL starting method, starting torque and starting current values are mentioned in data sheets.

To achieve high starting torque and lower starting current for squirrel cage induction motors, multi cage aluminium diecast rotor construction is used up to 280 frame size and deep bar single cage or double cage rotor construction is used for motors in frame size above 280. In case of wound rotor induction motor, starting torque and starting current depends on external resistance connected in rotor circuit. If the voltage varies from its rated value within the permissible limits, the starting, pull up and pull out torque vary as the square of the voltage.


> TYPICAL SPEED-TORQUE AND STARTING CURRENT CHARACTERISTICS:

> LOCKED ROTOR CURRENT (STARTING CURRENT) :

This is the current drawn by the motor at the time of starting when started on DOL. In data it is expressed as percentage of the rated current of the motor.

The starting current varies proportionately with voltage from its rated value within the permissible limits.

LOCKED ROTOR WITHSTAND TIME

It is the time taken by the motor windings or rotor to reach the maximum limiting temperature, during rotor locked condition, depending upon class of insulation, from either ambient temperature, or rated service temperature.

CALCULATION OF LOCKED ROTOR WITHSTAND TIME

STATOR:

Limiting Temperature T1			Maximum permissible Temp	erature T2	
Class B insulation	185 °C		Class B insulation	120 °C	
Class F insulation	210 °C		Class F insulation	145 °C	
Class H insulation	235 °C		Class H insulation	165 °C	
Aluminium rotor	450 °C				
Copper rotor	350 °C		Ambient Temperature	e Tamb	
			(T1 – Tamb) x w1 x k1		
Locked rotor withstan	ds time (Cold)	_			
			3 x lst ² R at permissible temperature		
$(T1 - T2) \times w1 \times k1$					
Locked rotor withstan	ids time (Hot)	=	2 ·· let ² D et nemerie sible terre		
			3 x lst ² R at permissible temp.		

> ROTOR:

Locked rotor withstands time (Cold) =	(T1 - Tamb) x w2 x k2		
Locked fotol withstands time (Cold) =	3 x lst ² R at permissible temp. x 0.85		
Looked roter withstands time (Hot)	(T1 – T2) x w2 x k2		
Locked rotor withstands time (Hot) =	3 x Ist ² R at perm. temp. x 0.85		

w1	= Weight of stator active material.	Specific heat of copper	$(v1) = 0.385 \text{ J/kg/}^{\circ}\text{C}$
w2	 Weight of rotor active material 	Specific heat of aluminium	$(v2) = 0.925 \text{ J/kg/}^{\circ}\text{C}$
k1	- Specific heat of stater active mater	ial (Copper)	

Specific heat of stator active material.

k2 Specific heat of rotor active material. (Copper or Aluminium)

❖ STARTING TIME :

It is the time taken by a motor to come to its rated speed Starting time depends on the following factors;

- 1. GD^2 of load referred to motor shaft plus motor GD^2
- 2. Torque speed curve of the motor
- 3. Torque speed curve of the load

Starting time should be lower than the locked rotor withstand time for a safe motor

CALCULATION OF STARTING TIME:

The starting time or the acceleration time can be calculated approximately by the following formulae

STATOR THERMAL - WITHSTAND TIME FOR 4 POLE SPDP MOTOR.

FORMULA:

TIME = $\frac{\text{Wt. of Copper x Specific heat of copper x Temp. difference x 1000}}{(\text{Ipu}^2-1) \text{ x Ifl}^2 \text{ x Resistance at reference temp.}}$

FRAME	KW	Tcold	Thot
CD-280S	110	12.0	7.0
CD-280M	132	12.0	7.0
CD-280M	150	12.0	7.0
CVD-280	160	12.0	7.0
CD-315M	180	14.0	8.0
CD-315L	200	14.0	8.0
CD-315L	220	14.0	8.0
CD-315L	250	14.0	8.0
CD-315L	280	14.0	8.0
CD-355L	370	16.0	10.0
CD-400L	450	16.0	10.0

STATOR THERMAL - WITHSTAND TIME FOR 6 POLE SPDP MOTOR :

FRAME	KW	Tcold	Thot
CVD-280	67	12.0	6.0
CVD-280	75	12.0	6.0
CVD-280	90	12.0	6.0
CD-315S	110	14.0	8.0
CD-315M	132	14.0	8.0
CD-315L	150	14.0	8.0
CD-315L	160	15.0	9.0
CD-355S	180 / 187	15.0	9.0
CD-355M	200	16.0	10.0
CD-355L	220	16.0	10.0
CD-355L	250	16.0	10.0

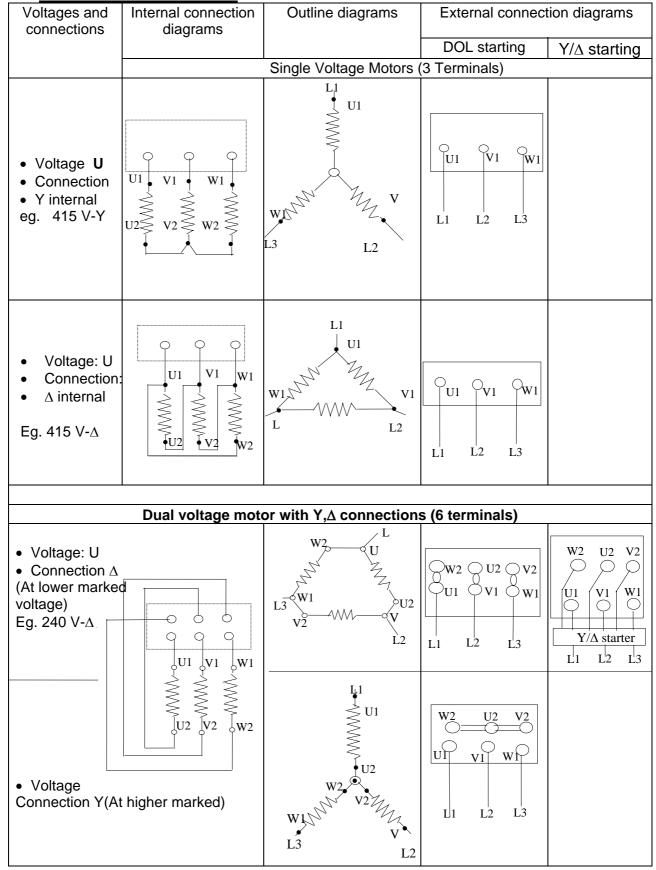
STATOR THERMAL - WITHSTAND TIME FOR 4 POLE TEFC MOTOR.

FORMULA:

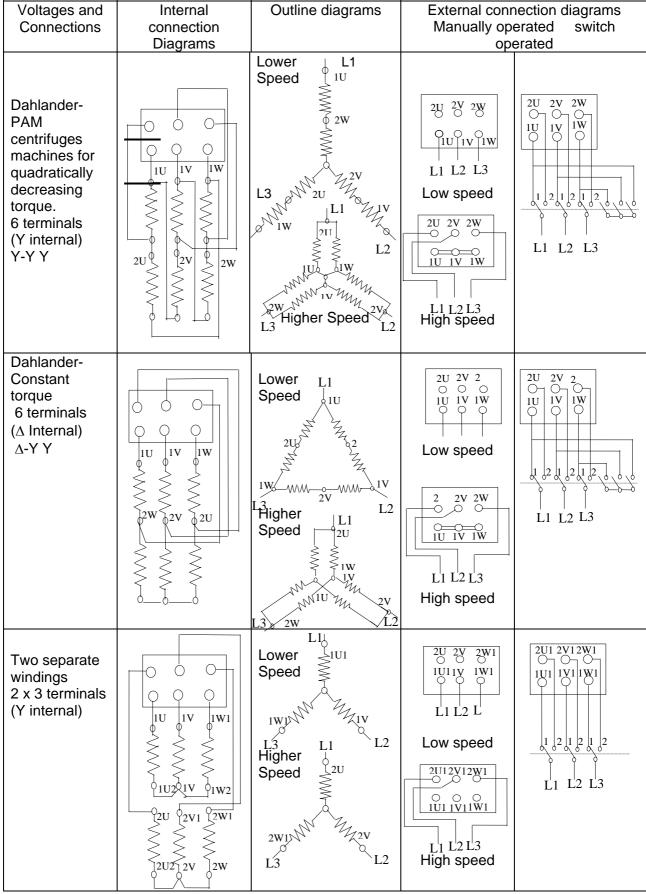
TIME = Wt. of Copper x Specific heat of copper x Temp. difference x 1000 (Ipu^2 -1) x Ifl^2 x Resistance at reference temp.

FRAME	KW	Tcold	Thot
CTF-225S	37	12.0	8.0
CTF-225M	45	12.0	8.0
CTF-250M	55	16.0	10.0
CTF-280S	67	16.0	10.0
CTF-280S	75	16.0	10.0
CTF-280M	90	16.0	10.0
CTF-315M	110	16.0	10.0
CTF-315M	125	16.0	10.0
CTF-315M	132	16.0	10.0
CTF-315L	150 /160	16.0	10.0
CTF-355S	187	18.0	12.0
CTF-355M	220	18.0	12.0
CTF-355M	250	18.0	12.0
CVTF-355	280	18.0	12.0
CVTF-355	315	18.0	12.0
CTF-400L	370	20.0	14.0

❖ STATOR THERMAL - WITHSTAND TIME FOR 6 POLE TEFC MOTOR:


FRAME	KW	Tcold	Thot
CTF-280S	45	12.0	8.0
CTF-280M	55	12.0	8.0
CTF-315S	67	16.0	10.0
CTF-315M	75	16.0	10.0
CTF-315M	90	16.0	10.0
CTF-315L	110	16.0	10.0
CTF-315L	132	16.0	10.0
CTF-355M	160	18.0	12.0
CTF-355M	180	18.0	12.0
CTF-355M	200	18.0	12.0
CVTF-355	220	18.0	12.0
CVTF-355	250	18.0	12.0

STATOR THERMAL - WITHSTAND TIME FOR 8 POLE TEFC MOTOR:


FRAME	KW	Tcold	Thot
CTF-315M	55	16.0	10.0
CTF-315M	75	16.0	10.0
CTF-315L	90	16.0	10.0
CTF-315L	110	16.0	10.0
CTF-355M	125 / 132	18.0	12.0

MOTOR CONNECTIONS

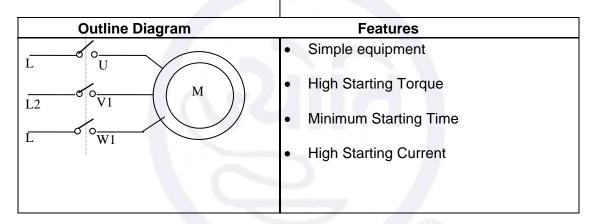
> SINGLE SPEED MOTORS:

TWO SPEED MOTORS

STARTING METHODS FOR INDUCTION MOTORS

The two essential parameters in starting cage motors are:

- -Locked rotor torque
- -Locked rotor current

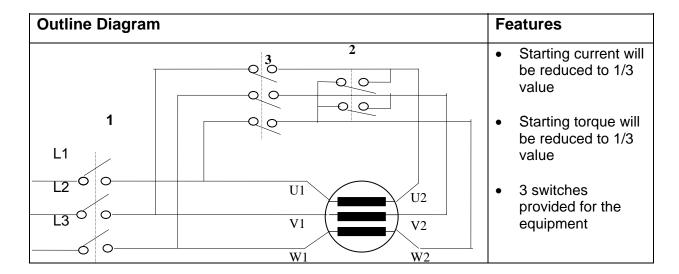

These two parameters and the resistive torque determine the acceleration time.

There are essentially four different types of starting mode, which are:

- 1. Direct-on-line starting
- 2. Star-Delta starting
- 3. Auto-Transformer starting
- 4. Starting with Resistance

DOL Starting :

Direct connections to the mains are the simplest method of starting for squirrel cage motors.



The only starting equipment needed is a direct-on-line starter. However, starting current is high with this method, so it has its limitations. Power supply utilities normally allow direct on line starting of squirrel cage motors rated at up to 3 to 5 kW, but if the supply is strong the power limit may be significantly higher.

If the direct on line starting current of the motor is higher than the supply limit, there are two possibilities; star-delta starting or starting with an autotransformer starter. However, both methods reduce the starting torque and should therefore only be used for comparatively easy starts. If the application calls for a high starting torque and the starting current must be limited, a slip ring motor will have to be used.

STAR-DELTA Starting:

The starting current impulse caused during the DOL starting of motors of higher ratings, lead to the drop in the voltage of the system. In such cases motors are generally started by means of star-delta starters, wherein the motor terminals get connected in star at the time of starting and thereby reducing the starting current. When the motor is accelerated to nearly 70% of full speed, the connections at the motor terminals are changed to delta, for the normal running of the motor on load.

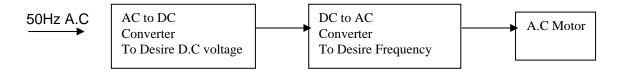
The first step in deciding whether star-delta starting can be used is to check that the starting torque of the motor is sufficient for the application. The load torque must not exceed the motor torque., nor must it be so high that the current at the moment of change over to Δ is unacceptably high. If the change over takes place at the maximum torque of the motor, the current will be about 50 to 80% of the starting current with direct-on-line starting.

Auto-transformer Starting :

In case of Autotransformer starting, starting current reduces in proportion of voltage applied to motor terminals.

Outline diagram	Features
L1 1 2 3 UI VI M M	 Reduction in torque is proportional to square of tapping. Reduction of current proportional to reduction in torque Current is not cut off

Resistance Starting :


In case of wound rotor induction motor rotor winding is star connected and three winding leads are terminated in a separate terminal box through a connection with suitable sliprings and brush gear.

> VFD (VARIABLE FREQUENCY DRIVE) SUITABLE MOTORS:

The most Effective and Energy efficient way to change the motor speed is to change the

Frequency of supplied voltage. VFDs are use for this purpose. VFD converts the fixed frequency supply voltage to a continuously variable frequency, there by allowing adjustable motor speed.

The basic steps for this process are shown in below fig.

The modern strategy for controlling the A.C O/P (Voltage & Frequency) of such a power Electronic

A converter is the technique known as Pulse Width Modulation using BJT or IGBT Transistors.

Currently PWM with IGBT Transistors are widely in use.

There are some undesirable Characteristics of IGBT Transistors as below.

- Large Voltage spikes due to high switching Frequency of relatively high voltage
 As e.g. for a 415V System it will be 3times Over voltage.
 - Due to this High voltage spikes there will be Premature failure occur in the motor
 - Insulation System. Basically Turn-to-Turn failures in start & end coils.
 - High voltage spikes causes capacitive coupled voltage to ground across the motor Bearings. The grease having partial insulation effects give rise to accumulation of Electric charge. Which causes bearing current flow through shaft & Grooves on bearing raceways.

To Overcome These Problems additional features required are as below

FEATURES REQUIRED FOR VFD SUITABLE MOTORS:

Additional features required

- 1) Insulated Bearing at either side of motor.
- 2) Dual Coated copper wire.
- Double Impregnation Process.

> VOLTAGE DROP ALONG THE CABLE:

Induction motors draw heavy currents during starting, resulting in considerable voltage drop along the cable. If other loads are connected in parallel to the motors, the voltage drop along the common feeder causes operational problems to these associated loads. Larger the starting current and longer the common feeder, larger will be the voltage drop. In view of this while specifying motors or cables, it is required to estimate the right combination of starting current and cable size, alternatively, it is important to know voltage drop for an installation when starting / locking of motors occurs such that the maximum voltage drop is less than 3%. The relative voltage drop, Δu is estimated as

$$\Delta u = \frac{u}{100}$$

Where U is the rated voltage of the motor, u is the voltage drop given as

L
$$u = b (\rho --- cos\phi + \lambda L sin\phi) I_s$$
 S

Where

u = Voltage drop

B = Factor equal to 1 for three-phase circuits and equal to 2 for Single-phase circuits.

 ρ = Resistivity of conductors in normal duty taken as being equal to the Resistivity at the normal duty temperature, i.e. 1.25 times the resistivity at 20°Cm giving 0.0225 Ω mm² / m for aluminium copper and 0.036 Ω mm² / m for aluminum.

L = Length of cabling in meters

S = Cross section of conductors in mm²

 $cos\phi$ = Power factor, if exact figure is not available it is equal to 0.8 and $sin\phi = 0.6$

 λ = Linear reactance of conductors, taken as being equal to 0.08 mΩ/m if the exact figure is not available

 I_s = Current in use.

> NEGATIVE SEQUENCE WITHSTAND CHARACTERISTICS

Negative sequence withstand characteristics are used to obtain capability of the motor to withstand the overloading caused by negative sequence currents that occur due to unbalance in supply voltage.

While % unbalance in voltage is given by the ratio

The negative sequence voltage, V_N for any degree of unbalance can be calculated by

$$V_N = 1/3 (V_a + \alpha^2 V_a + \alpha V_c)$$

Where $\alpha = 1 \angle 120^\circ$ and $\alpha^2 = 1 \angle 240^\circ$

Estimation of negative sequence current

 $V_a = 385 \angle 0^{\circ} V$

Once negative sequence voltage is known amount of negative sequence current that is ultimately responsible for overloading can be estimated from the following equivalent circuit of the motor. The value of circuit parameters can be obtained from design or from test results.

Determination of withstand capability:

Since the negative sequence currents result in overloading, the amount of negative sequence current carried by the winding, as a percentage of rated current can be used as a measure of overloading due to unbalance. The thermal withstand characteristics of the machine available for different overload conditions can be used to represent the capacity of the machine to withstand negative sequence voltage and current. The negative sequence withstand characteristics are design specific and will vary from motor to motor. A sample method for obtaining negative sequence withstand characteristics of the motor is given hereunder.

Sample Calculation:

Let nominal voltage be 415 V and rated current be 60 A. Under unbalance condition let the voltage be

NEGATIVE SEQUENCE VOLTAGE

$$V_N$$
 = $\frac{385 \angle 0^{\circ} + \alpha^2 410 \angle 120^{\circ} + \alpha 425 \angle 240^{\circ}}{3}$
= $11.66 \angle 158^{\circ}V$

% Negative sequence voltage = 11.66 / 407

= 2.86% (approx. 3%)

Now, if the parameters of the machine are as given below:

R1 = 0.052R2 = 0.071X1 = 0.51X2 = 0.53s = 0.0123Then $s_1 = 2 - 0.0123 = 1.9877$

From the equivalent circuit diagram

This corresponds to 18.6% (approx. 20%) of the rated current for the case considered here. This condition can be equated to an overload of 20%. Now the thermal withstand characteristics of the motor can be used to obtain the thermal withstand time for this particular motor. Similarly, thermal withstand time for different negative sequence voltage of voltage unbalance can be calculated.

The following table gives the thermal withstand time of this sample motor for different negative sequence voltage.

% Negative sequence voltage	% Negative sequence current	Withstan	d time Sec.
		Cold	Hot
1	6	Continuous	Continuous
2	10	Continuous	Continuous
3	20	3500	1800
6	40	1600	600
9	60	1100	400

DUTY

The various operating cycles of driven machines can be classified into nine basic duties, ranging from **S1** to **S9** separately indicated below. Suitable motors can be offered to match the duty cycles of the driven machines.

> CLASSES OF DUTY:

The following are the duty types:

- **S1** Continuous duty
- **S2** Short time duty
- S3 Intermittent periodic duty
- **S4** Intermittent periodic duty with starting.
- **S5** Intermittent periodic duty with starting and braking.
- **S6** Continuous duty with intermittent periodic loading.
- **S7** Continuous duty with starting and braking.
- **S8** Continuous duty with periodic speed charges
- **S9** Duty with Non-periodic load & speed variations.

1) Continuous Duty (Duty Type S1)

Operation at constant load of sufficient duration for thermal equilibrium to be reached. (Fig. 1)

2) Short Time Duty (Duty Type S2)

Operation at constant load during a given time, less than that required to reach thermal equilibrium, followed by a rest and de-energized period of sufficient duration to re-establish equality of temperature with the cooling medium. The recommended values for this type duty are 10,30,60 and 90 minutes. (Fig. 2)

3) Intermittent Periodic Duty (Duty Type S3)

A sequence of identical duty cycles, each consisting of a period of operation at constant load and a rest and a de-energized period, these periods being too short to attain thermal equilibrium during one duty cycle. In this duty, the cycle is such that the starting current does not significantly affect the temperature rise for this duty cycle. The duration of the duty cycle is 10 minutes if not otherwise specified. (Fig. 3)

4) Intermittent Periodic Duty with Starting (Duty Type S4)

A sequence of identical duty cycles each consisting of a period of starting, a period of operation at constant load and a rest period, the operating and rest and de-energized being too short to attain thermal equilibrium during one duty cycle. The stopping of the motor is obtained either by natural deceleration after disconnection of the electricity supply or by means of mechanical braking which does not cause additional heating of the windings. (Fig. 4)

5) Intermittent Periodic Duty with Starting and Braking (Duty Type S5)

A sequence of identical duty cycles each consisting of a period of starting, a period of operation at constant load, a period of rapid electric braking and a rest and de-energized period. The operating and rest and de-energized periods being too short to attain thermal equilibrium during one duty cycle. In this duty braking is rapid and is carried out electrically. (Fig. 5)

6) Continuous Duty with Intermittent Periodic Loading (Duty Type S6)

A sequence of identical duty cycles each consisting of a period of operation at constant load and a period of operation at no-load, machines with excited windings having normal no-load rated voltage excitation. Unless otherwise specified the duration of the duty cycle is 10 minutes. The recommended values of cyclic duration factor are 15,25,40 and 60 per cent. (Fig. 6)

7) Continuous Duty with Starting And Braking (Duty Type S7)

A sequence of identical duty cycles each consisting of a period of starting, a period of operation at constant load and a period of electrical braking. There is no rest and de-energized period, these periods being too short to attain thermal equilibrium during one duty cycle. (Fig. 7)

8) Continuous Duty with Periodic Speed Changes (Duty Type S8)

A sequence of identical duty cycles each consisting of a period of operation at constant load corresponding to a determined speed of rotation, followed immediately by a period of operation at other constant loads corresponding to different speeds of rotation. There is no rest and denergized period. These periods being too short to attain thermal equilibrium during one duty cycle. (Fig. 8)

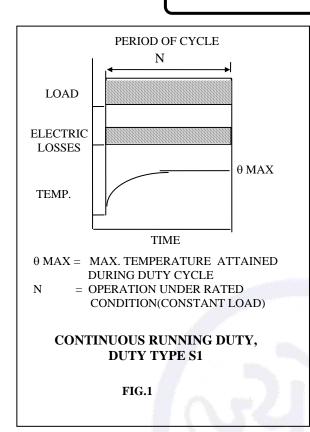
9) Duty with Non-Periodic Load And Speed Variations (Duty Type S9)

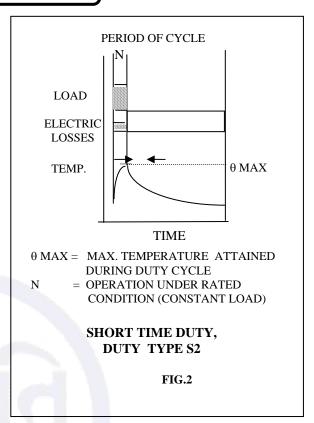
A duty in which generally load and speed are varying non-periodically within the permissible operating range. This duty includes frequently applied overloads that may exceed the full loads. For this duty, suitable load values should be taken as the basis of the overload concept. (Fig. 9)

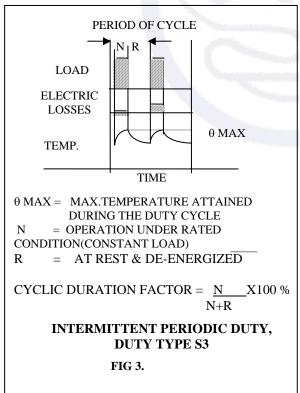
DESIGNATION:

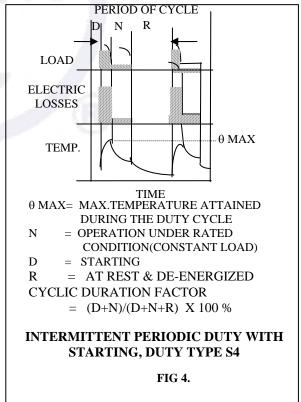
A duty type is designated by means of the abbreviation given below. For the duty type \$2 the abbreviation is followed by an indication of the duration of the duty. For type \$3 and \$6 the abbreviations are followed by an indication of the cyclic duration factor. For types \$4 and \$5 the abbreviations are followed by the indication of the cyclic duration factor, the number of duty cycles per hour (c/h) and the factor of inertia (FI). For type \$7 the abbreviation is followed by the indication of the number of cycles per hour and the factor of inertia. For the type \$8 and \$9 the abbreviation is followed by the indication of the number of duty cycles per hour and the factor of inertia together with the load. In addition, the cyclic duration factor should be indicated for each speed. The ratings shall be assigned in accordance with the requirements of this standard and be marked on the rating plate of the machine.

Examples:


```
S2 60 minutes
S3 25 percent
S6 40 percent
S4 25 percent 120 c/h FI Where FI = Factor of Inertia
S7 500 c/h FI = \frac{GD^2}{Of motor} = \frac{GD^2}{Of motor} = \frac{GD^2}{Of motor}


S8 S9 30 c/h FI 1.0kW 740 rpm 40 percent
```


APPLICATION OF DUTY TYPE RATED MOTORS:


Duty	Application
S1	Pumps, Blowers, Fans, Compressors
S2	Operation of gates of Dams, Sirens, Capstan.
S3	Valve actuators, Wire Drawing machines
S4	Hoist, Cranes, Lifts
S5	Hoists, Cranes, Rolling mills
S6	Conveyors, Machines tools
S7	Machine Tools
S8	Special applications where the motor is required
S9	to run at different speeds and different loads

DIAGRAMS OF DUTY

DIAGRAMS OF DUTY CYCLE

PERIOD OF ONE CYCLE

N
R
LOAD

ELECTRIC
LOSSES

TEMP.

θ MAX

TIME

θ MAX

TIME

θ MAX

THE DUTY CYCLE

N = OPERATION UNDER RATED CONDITION

R = OPERATION ON NO - LOAD CYCLIC DURATION FACTOR = N X 100 %

 $\frac{N-N}{N+R}$

CONTINUOUS DUTY WITH INTERMITTENT PERIODIC LOADING,
DUTY TYPE S6

FIG.5

DUTY TYPE S5

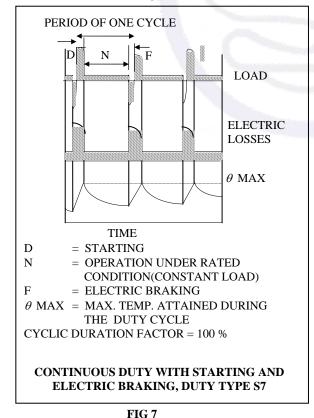
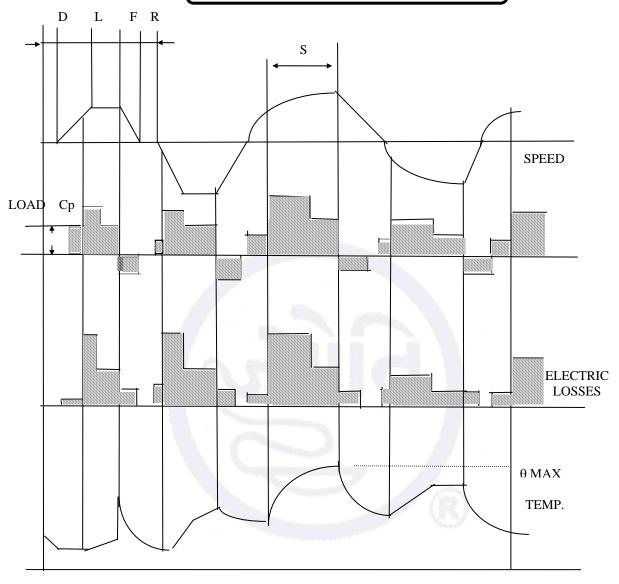



FIG.6 PERIOD OF F1 F2 ONE CYCLE N2 LOAD ELECTRIC LOSSES θΜΑΧ TEISIPEED = ACCELERATION = ELECTRIC BRAKING N1,N2,N3 = OPERATION AT RATED CONDITION θ MAX = MAX.TEMP. ATTAINED DURING THE DUTY CYCLE = D+N1+F1+N2+F2+N3CYCLIC DURATION FACTOR = (D+N1) X 100/S % $= (F1+N2) \times 100/S \%$ $= (F2+N3) \times 100/S \%$ CONTINUOUS DUTY WITH PERIODIC SPEED **CHANGES DUTY TYPE S8**

FIG.8

DIAGRAMS OF DUTY CYCLE

TIME

D = STARTING

F = ELECTRIC BRAKING

S = OPERATION UNDER OVERLOAD $\theta MAX = MAXIMUM TEMP. ATTAINED DURING$

DUTY CYCLE

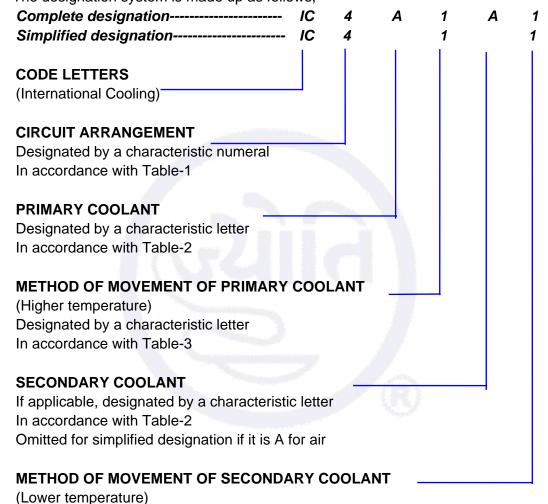
L = OPERATION UNDER VARIOUS LOADS

R = AT REST AND DE-ENERGIZED

Cp = FULL LOAD

DUTY WITH NON-PERIODIC LOAD AND SPEED VARIATIONS TYPE S9 FIG.9

METHODS OF COOLING


DESIGNATION SYSTEM:

The cooling system designation consists of,

Designated by a characteristic letter

In accordance with Table-3

- \Rightarrow The letter IC.
- ⇒ A letter designating the cooling circuit arrangement.
- ⇒ Two sets of designation numbers, one set each for primary & secondary cooling. The designation system is made up as follows,

NOTE: The following rule may be applied to distinguish between complete & Simplified designations.

- A complete designation can be recognized by the presence (after the letters IC) of three or five numbers & letters in the regular sequence = numeral,(letter, numeral). Examples: IC3A1, IC4A1A1 or IC7A1W7.
- A simplified designation has two or three consecutive numerals, or a letter in the final position Examples: IC31, IC411 or IC71W.

Table 1 - Circuit arrangement :

<u> 1 able 1 - Cii</u>	<u>rcuit arrangement :</u>	
CHAR. NUMERAL	BRIEF DESCRIPTION	DEFINITION
0	Free circulation	The coolant is freely drawn directly from the surrounding medium, cools the machine, & then freely returns directly to the surrounding medium (open circuit).
1	Inlet pipe or inlet duct circulated	The coolant is drawn from a medium remote from the machine, is guided to the machine through an inlet pipe or duct, passes through the machine & returns directly to the surrounding medium (open circuit).
2	Outlet pipe or outlet duct circulated	The coolant is freely drawn directly from the surrounding medium, passes through the machine & is then discharged from the machine through an outlet pipe or duct to a medium remote from the machine (open circuit).
3	Inlet & outlet pipe or duct circulated	The coolant is drawn from a medium remote from the machine, is guided to the machine through an inlet pipe or duct, passes through the machine & is then discharged from the machine through an outlet pipe or duct to a medium remote from the machine (open circuit).
4	Frame surface cooled	The primary coolant is circulated in a closed circuit in the machine & gives its heat through the external surface of the machine (Im addition to the heat transfer via the stator core & other heat conducting parts) to the final coolant, which is the surrounding medium. The surface may be plain or ribbed, with or without an outer shell to improve the heat transfer.
5	Integral heat exchanger (using surrounding medium)	The primary coolant is circulated in a closed circuit & gives its heat via a heat exchanger, which is built into & forms an integral part of the machine, to the final coolant to the surrounding medium.
6	Machine-mounted heat exchanger (using surrounding medium)	The primary coolant is circulated in a closed circuit & gives its heat via a heat exchanger, which is mounted directly on the machine, to the final coolant to the surrounding medium.
7	Integral heat exchanger (using remote medium)	The primary coolant is circulated in a closed circuit & gives its heat via a heat exchanger, which is built into & forms an integral part of the machine, to the secondary coolant to the remote medium.
8	Machine-mounted heat exchanger (using remote medium)	The primary coolant is circulated in a closed circuit & gives its heat via a heat exchanger, which is mounted directly on the machine, to the secondary coolant, which is the remote medium.
9	Separate heat exchanger (using surrounding or remote medium)	The primary coolant is circulated in a closed circuit & gives its heat via a heat exchanger, which is separate from the machine, to the secondary coolant, which is either the surrounding or the remote medium.

> Table 2 - Coolant :

Characteristic letter	Coolant
A	Air
F	Freon
Н	Hydrogen
N	Nitrogen
С	Carbon dioxide
W	Water
U	Oil
S	Any other coolant
Y	Coolant not yet selected

Table 3 - Method of Movement

CHARACTE -RISTIC NUMERAL	BRIEF DESCRIPTION	DEFINITION
0	Free circulation	The coolant is moved by temperature differences. The fanning action of rotor is negligible.
1	Self-circulation	The coolant is moved dependent on the rotational speed of the main machine, either by the action of the rotor alone or by means of a component designed for this purpose & mounted directly on the rotor of the main machine, or by a fan or pump unit mechanically driven by the rotor of the main machine.
2,3,4		Not yet defined
5	Integral independent component	The coolant is moved by an Integral component, the power of which is obtained in such a way that it is independent of the rotational speed of the main machine, e.g. a machine mounted fan unit driven by its own electric motor.
6	Machine-mounted independent component	The coolant is moved by a component mounted on the machine, the power of which is obtained in such a way that it is independent of the rotational speed of the main machine, e.g. a machine mounted fan unit or pump unit driven by its own electric motor.
7	Separate & independent component or coolant system pressure	The coolant is moved by a separate electrical or mechanical component not mounted on the machine & independent of it or is produced by the pressure in the coolant circulating system, e.g. supplied from a water distribution system, or a gas main under pressure.
8	Relative displacement	The movement of the coolant results from relative movement between the machine & the coolant, either by moving the machine through the coolant or by flow of the surrounding coolant (air or liquid)
9	All other components	The movement of the coolant is produced by a method other than defined above & shall be fully described.

	than defined above & shall	be fully described.
	Table 4 - STANDARD CODES	
IC 01	Self cooling open machine, fan mounted on the Shaft. Screen protected Drip Proof (SPDP)	
IC 410	Enclosed machine, surface cooled by natural Convection & radiation. No external fan. Totally Enclosed (TE)	
IC 411	Enclosed machine, smooth & finned ventilated Casting. Fan mounted on the shaft. Totally Enclosed Fan Cooled (TEFC)	
IC 611	Closed air circuit cooled by air. Fan mounted on the shaft. Closed Air Circuit Air Cooled (CACA)	

DETERMINATION OF IP NUMBERS

Code letters
International Protection

First Characteristic numeral
(Dust protection / Solid Object, numerical 0-5 or letter X)

Second Characteristic numeral
(Liquid protection, numerical 0-6 or letter X)

Optional letter for application in specified weather conditions (normally agreed Between user and manufacturer, example: rain hood

(PR		NUMBER AINST SOLID OBJECT)	SECOND NUMBER (PROTECTION AGAINST LIQUIDS)			
IP		TESTS		IP N	TESTS	
0		No Protection	0		No Protection	
1		Protected against solid objects up to 50 mm, e.g. accidental touch by hands	1		Protected against vertically falling drops of water (e.g. condensation)	
2		Protected against solid objects up to 12 mm, e.g. fingers.	2	15:4	Protected against direct spray of water up to 15° from vertical	
3		Protected against solid objects over 2.5 mm, e.g. tools & wires.	3		Protected against spray of water up to 60° from vertical	
4		Protected against solid objects over 1 mm, e.g. thin wires.	4		Protected against water splashes from all direction	
5		Protected against dust - limited ingress permitted (no harmful deposit).	5		Protected against low- pressure jets of water from all direction.	
			6		Water from Heavy Seas shall not harm	

MOUNTING ARRANGEMENT

	HORIZONTA	AL.		VERTICAL			
FIGURE				FIGURE			
REF	IM 1001 (B3)	IM 3001 (B5)		REF	IM 3011 (V1)	IM 1011 (V5)	
FRAME	WITH FEET	WITHOUT FEET		FRAME	WITHOUT FEET	WITH FEET	
SHAFT	HORIZONTAL	HORIZONTAL		SHAFT	FACE VERT.DOWN	FACE VERT.DOWN	
MTNG	BASE OR RAIL	FLANGE TYPE B		MTNG	FLANGE TYPE B	BASE OR RAIL	
FIGURE				FIGURE			
REF	IM 2001 (B35)	IM 3601 (B14)		REF	IM 2011 (V15)	IM 3031 (V3)	
FRAME	WITH FEET	WITHOUT FEET	N.	FRAME	WITH FEET	WITHOUT FEET	
SHAFT	HORIZONTAL	HORIZONTAL		SHAFT	FACE VERT DOWN	FACE VERT UPWARD	
MTNG	BASE OR FLANGE TYPE B	FLANGE TYPE C		MTNG	WALL OR FLANGE TYPE B	FLANGE TYPE B	
FIGURE				FIGURE			
REF	IM 2101 (B34)	IM 1051 (B6)		REF	IM 2031 (V36)	IM 1031 (V6)	
FRAME	WITH FEET	WITH FEET		FRAME	WITH FEET	WITH FEET	
SHAFT	HORIZONTAL	HORIZONTAL		SHAFT	FACE VERT UP	FACE VERT UP	
MTNG	BASE OR FLANGE TYPE C	WALL		MTNG	WALL OR FLANGE TYPE B	WALL	
FIGURE				FIGURE		<u>,</u>	
REF	IM 1061 (B7)	IM 1071 (B8)		REF	IM 3611 (V18)	IM 3631 (V19)	
FRAME	WITH FEET	WITH FEET		FRAME	WITHOUT FEET	WITHOUT FEET	
SHAFT	HORIZONTAL	HORIZONTAL		SHAFT	FACE VERTICAL DOWN	FACE VERTICAL UPWARD	
MTNG	WALL	CEILING		MTNG	FLANGE TYPE C	FLANGE TYPE C	

For installation of foot mounted motor on the wall Additional wall support should be required.

REFERENCE IS 2253

CONSTRUCTIONAL DETAILS

*** ENCLOSURE:**

All foot-mounted motors have integral feet. TEFC & TE motors have integral longitudinal fins/ribs for effective heat transfer. The stator and end shields are machined to close tolerances for providing perfect alignment and fits. Motors with drain holes at their lowest position and drain plugs can be provided on request.

*** BODY AND END SHIELDS:**

Stator frame and end shields of motor are of rigid cast iron of grade FG-200 as per IS-210. Large sized motor frames are of fabricated construction using FE-410 WA (ST-42) steel as per IS-226.

❖ CORE:

Both stator and rotor cores are made of high quality low loss silicon steel laminations. These are insulated on both sides. In larger machines thick end plates are used to give additional mechanical rigidity.

*** WINDINGS**;

Stator and rotor windings (Slip ring motors) consist of modified polyester enamel covered copper wire conforming to IS: 13730 part 3 / IS: 4800 part V. As per requirement of the client we can provide dual coated copper wires as per IS: 13730 part 13 can be provided.

❖ INSULATION:

Standard motors are provided with windings having Class "F" Insulation with maximum permissible temperature limited to class "B" Insulation level as specified in IS - 12802. When required, motors can be provided with Class "H" Insulation. Vacuum and pressure impregnation using thermosetting type impregnation varnish makes winding more resistant to effect of oil, moisture and other contamination. It also gives additional mechanical strength. On special request, windings can be given tropic proofing and antifungal treatment by epoxy coating. Winding overhangs are given epoxy coating for protection against moisture and polluted atmosphere.

Table showing maximum temperature rise of winding by resistance method for different ambient temperature and the *Hot spot temperature for the insulation system is given below: (As per IS 12802)

Class of insulation	Max. Permissible Temp. Limit (°C)	*Hot spot allowance (°C)		Max. Permissible Tem above an ambient tem of (°C)		•	
			40	45	50	55	60
В	130	10	80	75	70	65	60
F	155	10	105	100	95	90	85
Н	180	15	125	120	115	110	105

Hot spot allowance is an empirical value expressed in °C, by which hottest spot of winding can
exceed the mean temperature rise of the winding. The temperature rise is calculated by the following
formula:

$$t_2$$
 - t_a = (R_2 - R_1) / R_1 x (constant + t_1) + t_1 - t_a

Where

t₂ = temperature of winding at the end of temperature rise test.

t₁ = temperature of winding before temperature rise test.

t_a = temperature of cooling medium at end of temperature rise test.

R₂ = resistance of winding at the end of temperature rise test.

 R_1 = resistance of winding at temperature t_1 Constant = 234.5 for copper conductor

❖ EARTHING:

Two numbers of M8 screws and washers are provided for earthing frame up to 250. For frames 280 and above M12 screws are provided. Additional earthing bolts are provided inside the terminal box.

ROTOR:

The rotor of Squirrel cage motor is made of diecast aluminium up to 280-frame size (or alloy in case of special machines). Rotors of higher frames are made of electrolytic copper/copper alloys bars and short circuit rings connected by high quality silver containing brazing alloy. The rotors of SR (slip ring) motors are wound with copper wire or strip. All rotors are dynamically balanced to grade 6.3 as per ISO-1940 using half key to required accuracy. Coupling halves, pulleys or pinions belonging to the motor have to be balanced with half key.

SLIPRING AND BRUSHGEAR:

SR motors are provided with slipring and brush gear arrangement. The sliprings are moulded in epoxy-based insulation and have excellent stability at high temperature and have very good anti-tracking property. Fabricated sliprings as per steel plants specification are also supplied on request. The brush holder made of brass along with metal graphite carbon brushes are provided - one on each ring phase. The grade of carbon brush is M15E of Assam carbon or equivalent. The adjustable device for brush tension with the help of adjustable nuts is provided on the brush arm on request.

TERMINAL BOX:

Motors rated up to and including 2.2 kW (3 HP), are provided with 3 stud type terminals and motors above 2.2kW (3HP) are provided with 6 terminals. The terminal blocks for star connection are provided with markings U, V and W. The terminal blocks for delta connection are provided with markings U1, V1, and W1. And U2, V2, W2. Clearance and creep age distances in the terminal box are as per IS: 6381. Terminal box of all motors are rotatable to 360 °C in steps of 90 °C. This feature has been incorporated in order to facilitate cable entry from any direction. The terminal box provided for standard motors is of cast aluminium alloy or cast iron or fabricated sheet metal. The detailed dimensions of the terminal box are given in the drawings at the end of the catalogue. As of standard practice, the terminal box is provided on the right hand side, when viewed from driving end. On special requirement, terminal box can be provided on the left hand side, when viewed from driving end. The terminal box in frame size 225 and above is suitable for withstanding short circuit fault of 35 MVA (i.e., 50KA for 0.25 Sec. at 415 volts). Separate terminal can be provided on request

CABLE GLANDS:

Standard TEFC/SPDP motors are provided with cable entry hole in cast iron / fabricated terminal box. These cable entry holes are suitable for cable gland as per the customer's cable. On request single or double compression glands can be provided with terminal box. However for selection of single or double compression glands type, the type of cable and its size is required to be mentioned at the inquiry/tender/purchase stage itself. Terminal boxes are suitable to accommodate aluminium cable sizes as mentioned in the table enclosed.

❖ SHAFT:

Shafts are liberally designed to take care of the weight of rotating parts and the unbalance magnetic pull, ensuring that critical speed is more than 130 % of rated speed. The shaft is made of 40C8 steel. Shaft made of special steel are also available on demand to suit the requirement of application.

BEARINGS AND LUBRICATION:

Antifriction bearings are used at driving and non-driving ends. Bearings are liberally designed for L₁₀ life of more than 20 000 hours. **Lithium base grease of Grade-3 as per IS-7623** having drop point 160 °C is provided and recommended for replenishment. Motor having oil lubricated bearing is provided with oil bath, level gauge, oil filling plug and oil drainage plug. After end of relubrication interval as marked on separate nameplate, oil should be changed using recommended quality of oil as per IS-1012. Regreasing arrangement is provided for all motors above 225 frames. Regreasing interval, quantity etc, are indicated on separate nameplate. In case of pulley drive, it is preferable that data of belt tension, type and size of pulley etc. should be furnished by the customer. List of maximum axial/radial load allowed due to driven equipment for bearings are attached

BEARING CHARTS

			ВТМ		6318	6320	6320	1	ı				
		Ţ:	CUD										
		SHAI		TOP		6318	6320	6322	1	'			
	~	SOLID	SOLID	SOLID SHAFT	SOLID	CUTF	ВТМ		6316	6318	6322	6324	NU324
	МОТО		S	TOP		6316	6318	6322	6324	7322			
	VERTICAL MOTOR		CVD)	ВТМ		6318	6320	6320		1			
	VEF	VEF	HOLLOW SHAFT	SPDP (CVD)	TOP		2X7322	29326	29326	-	-		
TYPE		MOTIC	(YTF)	ВТМ		6316	6318	6322	1	1			
BEARING TYPE		SLIPRING SPDP (WD) TEFC	TEFC (CVTF)	TOP		2X7322	29324	29326		ı			
_			5 NING	SING	(MD)	NDE		6316	6320	6320	6320	-	
)R		SLIPF	SPDP (DE)	NU 318	NU 320	NU 322	NU 322	-		
	L MOTC		HORIZONTAL MO REL CAGE SPDP (DP)	(DP)	NDE		6316	6320	6320	6320	1		
	RIZONTA			SPDP	DE		NU 318	NU 320	NU 322	NU 322			
	오			СТЕ)	NDE		6316	6318	6322	6324	6324		
			TEFC (DE		NU 316	NU 318	NU 322	NU 324	NU 324			
	a	0		ш	*	4,6,8	4,6,8	4,6,8	4,6,8	6,8,10			
ш	œ	∢	Σ	ш		280	315	355	400	450			

* Note:_At present the above bearings data should be taken for 2 Pole motors also

BEARING & LUBRICATION

(A) HORIZONTAL MOTOR:

BEARING TYPE		REGREASING QUANTITY in gms.		RELUBRICATION INTERVAL in working hours		
DE	NDE	DE	NDE	1500 rpm	1000 rpm	
6316	6314	35	30	7,000	12,000	
NU 316	6316	35	35	3,500	6,000	
NU 318	6316	40	35	3,000	5,500	
NU 320	6318	50	40	2,600	5,000	
NU 322	6320	60	50	2,250	4,400	
NU 322	6322	60	60	2,250	4400	
NU 324	6324	75	75	1,850	3,800	

(B) <u>VERTICAL MOTOR:</u>

BEARING TYPE		REGREASING QUANTITY in gms.		RELUBRICATION INTERVAL in working hours		
ТОР	воттом	ТОР	воттом	1500 rpm	1000 rpm	
6316	6216	35	20	7,000	12,000	
6316	6316	35	35	7,000	12,000	
6318	6318	40	40	6,000	11,000	
6322	6320	60	50	4,500	8,500	
6322	6322	60	60	4,500	8,500	
7316	6211	35	10	7,000	12,000	
2X7316	6211	70	10	7,000	12,000	
7316	6320	35	50	5,250	10,000	
7317	6312	40	20	6,500	11,500	
7320	6212	50	15	5,250	10,000	
2X7320	6216	100	20	5,250	10,000	
7322	6316	60	35	4,500	8,500	
2X7322	6316	120	35	4,500	8,500	
2X7322	6318	120	40	4,500	8,500	

NOTE: Relubrication given above is for general guidelines. Care has to be taken during maintenance schedule that foreign particles do not enter in the bearings & grease

PERMISSIBLE RADIAL PULLEY LOADS & RECOMMENDED PULLEY SIZES

FRAME	PERMISSIBLE R	ADIAL LOAD (kg)	PERMISSIBLE	PULLEY SIZE
SIZE	4 POLE	6 POLE	Diameter (mm)	Width (mm)
CTF - 280	800	910	450	225
CTF - 315	1250	1400	500	250
CTF - 355	1650	1950	560	280
CTF - 400	1850	2050	600	310
CD - 280	1200	1320	450	225
CD - 315	1450	1650	500	250
CD - 355	1650	1950	560	280
CD - 400	1850	2050	600	310

Note: The above pulley dimension ensures that the radial load at the shaft end remains within the permissible limits & at the centre of shaft extension.

PULLEY DIAMETER:

When the desired bearing life has been determined, the minimum permissible pulley diameter can be calculated using F_R as follows:

$$D = \begin{array}{c} 1.9 \times 10^7 \times K \times P \\ \hline N \times F_R \end{array} \qquad \begin{array}{c} \text{where D = diameter of pulley, mm} \\ \text{P = Power requirement, kW} \\ \text{n = Motor speed, rpm} \end{array}$$

K = Belt tension factor, dependent on belt type and type of duty. A common value for V-belt is 2.5

 F_R = Permissible radial force.

MAXIMUM PERMISSIBLE AXIAL THRUST LOAD

SR. NO	FRAME SIZE	kW RATING	POLE	TOP BEARING	ALLOWE	M PUMP THRI D WITH BEAI ATLEAST, In I	RING LIFE
					20,000 Hrs.	40,000 Hrs.	1,00,000 Hrs.
1.	CVD-280	168	4	2 X 7322 BG	2850	2200	1500
2.	CVD-315	280	4	29326 E	7350	5850	4250
3.	CVD-315	150	6	29326 E	8350	6650	4850
4.	CVD-355	355	4	29326 E	7200	5650	4100
5.	CVTF-280	100	4	2 X 7322 BG	3000	2300	1650
6.	CVTF-315	160	4	29324 E	4200	3300	2300
7.	CVTF-315	132	6	29324 E	7550	6050	4500
8.	CVTF-355	250	4	29326 E	7150	5600	4050

❖ SLIP RING MOTORS:

If direct on line starting is not permitted, and the starting torque with star-delta starting is too low, a slip ring motor may be used.

A slip ring motor is started with the aid of an external resistance, which is connected to the rotor circuit via a slip ring mechanism. Connecting in the extra rotor resistance during the start gives a lower starting current and a higher starting torque. The resistance of the rheostat (variable resistor) can be chosen so that the starting torque has the desired value right up to the maximum torque.

During the start the rheostat is gradually removed from the circuit as the speed of the motor increases. When the entire rheostat is out of the circuit, rated speed can be achieved. The rotor winding is short-circuited and the motor is working equivalent to a squirrel cage motor.

The size of the rheostat is chosen on the basis of the mean torque required during the start. The rated data of the motor can be used to calculate the resistance that will give rated current and rated torque on starting. The resistance R_2 is worked out with the formula:

To reduce brush and slipring wear, motors can be fitted with brush-lifting gear. This is mainly used for large motors and when the motor runs continuously for long periods. The brush lifting device is designed so that a simple manual operation simultaneously lifts the brushes and short circuit the sliprings. This is done when the motor has reached rated speed.

❖ POWER FACTOR IMPROVEMENT CAPACITORS:

A motor consumes not only active power, which it converts into mechanical work, but also reactive power, which is needed for magnetization but does not perform any work

The active and reactive power together give the apparent power. The ratio between the active power measured in kW, and the apparent power measured in KVA, is known as the power factor. The power factor is usually between 0.7 and 0.9 designated by cosφ. It is lower for small motors and higher for larger ones.

If there are many motors in an installation it will consume a lot of reactive power and will therefore have a lower power factor. Power supply utilities sometimes require the power factor of an installation to be raised. This is done by connecting capacitors to the supply, these generate reactive power and thus raise the power factor.

With phase compensation the capacitors are usually connected in parallel with the motor or group of motors. The capacitors must not be connected in parallel with single phases of the winding; such an arrangement may make the motor difficult or impossible to start with star delta starting. The formula for calculating the size of a capacitor for a mains frequency of 50Hz is as follows:

❖ POWER FACTOR IMPROVEMENT CHART

Ratings of capacitors in KVAR required for given degree of power factor correction per kW of load.

INITIAL POWERFACTOR VS KVAR OF CAPACITORS

INITIAL POWER					
FACTOR	CORR	ECTION	то		
	0.85	0.90	0.95	0.98	Unity
0.50	1.112	1.248	1.403	1.529	1.732
0.51	1.066	1.202	1.357	1.483	1.686
0.52	1.024	1.160	1.315	1.441	1.644
0.53	0.980	1.116	1.271	1.397	1.600
0.54	0.939	1.075	1.230	1.356	1.559
0.55	0.899	1.035	1.190	1.316	1.519
0.56	0.860	0.996	1.151	1.277	1.480
0.57	0.822	0.958	1.113	1.239	1.442
0.58	0.785	0.921	1.076	1.202	1.405
0.59	0.748	0.884	1.039	1.165	1.368
0.60	0.714	0.849	1.005	1.131	1.334
0.61	0.679	0.815	0.970	1.096	1.299
0.62	0.645	0.781	0.936	1.062	1.265
0.63	0.613	0.749	0.904	1.030	1.233 1.200
0.64	0.580 0.549	0.716 0.685	0.871 0.840	0.997 0.966	
0.65 0.66	0.549	0.654	0.809	0.935	1.169 1.138
0.67	0.318	0.624	0.809	0.935	1.108
0.68	0.459	0.595	0.750	0.876	1.079
0.69	0.429	0.565	0.720	0.840	1.049
0.70	0.400	0.536	0.691	0.811	1.020
0.71	0.372	0.508	0.663	0.783	0.992
0.72	0.343	0.479	0.634	0.754	0.963
0.73	0.316	0.452	0.607	0.727	0.936
0.74	0.289	0.425	0.580	0.700	0.909
0.75	0.262	0.398	0.553	0.673	0.882
0.76	0.235	0.371	0.526	0.652	0.855
0.77	0.209	0.345	0.500	0.620	0.829
0.78	0.183	0.319	0.473	0.594	0.803
0.79	0.156	0.292	0.447	0.567	0.776
0.80	0.130	0.266	0.421	0.541`	0.750
0.81	0.104	0.240	0.395	0.515	0.724
0.82	0.078	0.214	0.369	0.489	0.698
0.83	0.052	0.188	0.343	0.463	0.672
0.84	0.026	0.162	0.317	0.437	0.645
0.85	-	0.136	0.291	0.417	0.620
0.86	-	0.109	0.264	0.390	0.593
0.87	-	0.083	0.238	0.364	0.567
0.88	-	0.054	0.209	0.335	0.538
0.89	-	0.028	0.183	0.309	0.512
0.90	-	-	0.155	0.281	0.484

The reactive power (KVAR) $Q = K \times R$ atted power / Efficiency. Where K is the constant from the chart.

Example: Initial power factor = 0.80, Correction desired = 0.98, Capacitor KVAR required per kW load from chart = 0.541, load of motor = 125 kW, Capacitor KVAR required = 0.541x125/0.935 = 72.326 = 75 KVAR

TERMINAL BOXES FOR STANDARD MOTORS

FRAME	MAXIMUM RATING	STUD SIZE (Qty- 6NOS)	· •	SIZE r equivalent ke)	CABLE SIZE ALLUMINIUM OR COPPER	TERMINAL BOX SIZE
	(kW)		CRIMPING TYPE	SOLDER- ING TYPE	Nos X COREX AREA (mm²)	LXBXH (mm)
280	132	M 12 (B)	CUS 27	13 EL	2 X 3C X 200	320 X 320 X 200
280	168	M 12 (B)	CUS 27	13 EL	2 X 3C X 200	320 X 320 X 200
315	250	M 16 (B)	CUS 33	14 EL	2 X 3C X 400	320 X 320 X 200
315	280	M 20 (B)	CUS 33	14 EL	2 X 3C X 400	320 X 320 X 200
355	370	M 20 (C)	CUS 33	18 EL	2 X 3C X 400	400 X 400 X 200
355	370	M 24 (B)	CUS 34	20 EL	2 X 3C X 400	400 X 400 X 220
400	370	M 20 (C)	CUS 33	18 EL	2 X 3C X 400	400 X 400 X 200
400	370	M 24 (B)	CUS 34	20 EL	2 X 3C X 400	400 X 400 X 220

(B) - BRASS MATERIAL, (C) - COPPER MATERIAL.

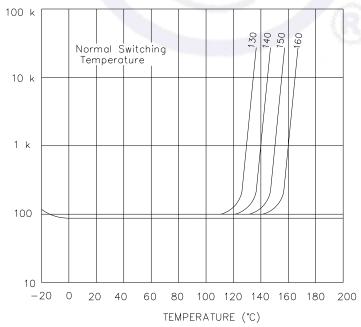
NOTE: Frame size 225 & above suitable for single & double compression type. Cable gland can be provided on request. For detail dimensions of terminal box refer drawing No: 4EK-3118.

ACCESSORIES

The accessories that can be provided along with a motor, when required are thermistors, space heaters, sockets for customers cable, compression glands, RTD, BTD & Dial type thermometer for bigger frames.

1. THERMISTORS:

These are semiconductor devices, which have a property of suddenly changing their resistance at a definite temperature known as 'Curie Point'. Thermistors that may be provided on the motors are those having 'Positive Temperature Coefficient' (PTC). Where the resistance suddenly increases at 'Curie Point'.


A combination of different ratings of thermistors can be provided in same motor for 'Alarm & trip' facilities for frame 160 and above only.

DISC TEMPERATURE (°C)	RESISTANCE (Ω)
25	250 (MAX.)
TR-5	550 (MAX.)
TR	1000 (MAX.)
TR+5	1330 (MIN.)
TR+15	4000 (MIN.)

THERMISTOR TYPE TO INSULATION CLASS BS 4999 Pt-72

CLASS OF INSULATION	THERMISTOR TYPE	
	EARLY WARNING	TRIP
Α	90 OR 100	110
E	110	130
В	120	140
F	140	160
Н	170	190

Typical Resistance v/s Temperature Characteristics for each switching temperature.

The thermistors generally provided are rated for 160°C (PTC 160) for class F motors. The motor having class F insulation with class B rise are provided as follows

Thermistor	3 Nos PTC-160 for trip	+3 Nos additional or 3 Nos PTC-150 for alarm.
------------	------------------------	---

> MODE OF OPERATION:

The thermistors connected in series are placed inside of each of the phase windings of the motor. This gives protection against single phasing and/or overheating due to excess load on the motor. During normal operation the thermistors carry a current of few mA. Which is sufficient to actuate a relay in control unit. This in turn allows the contactor-operating coil to hold the starter in the 'Run' position. If the winding of the motor heats up to such an extent so as to bring the temperature of the thermistor up to the 'Curie Point'. The increase in the resistance causes the relay to open and the contactor to disconnect the motor supply. The leads of thermistors are brought to a terminals fitted inside the terminal box for motors up to frame 180. For frame 200 and above separate auxiliary terminal box is provided.

- 2. THERMOCOUPLE: Copper Constantant thermocouple 1 No / per phase
- 3. RESISTANCE TEMPERATURE DETECTOR (RTD): (For frame size 280 & above)

It can provide protection as well as temperature indication.

Platinum type wire / strip / stem type.

RTD - PT 100 i.e. 100 Ω at 0 °C

For winding, - 1 No / phase

For Bearings - 1 No / Bearing

4. DIAL TYPE THERMOMETER:

Mercury in steel stem type thermometer with dial type read out & NC/NO contact.-1 No / Bearing

5. **SPACE HEATER:**

Severe climatic condition like very low temperature & high humidity may develop moisture or dew setting inside the motor over the winding, & there by reducing insulating resistance. The space heaters mounted on the overhang of the winding, maintain average temperature of the motor during idle condition or kept for storage for a long duration.

The motors are provided with anti-condensation heater above 90 frame.

١	FRAME SIZE	POWER (W)
ľ	280	150 or 160 watts
	315 & 355	225 or 240 watts
	400 & 450	300 or 320 watts

The anti-condensation heaters need 240 V, single phase, 50 Hz supply.

- > **CAUTION**:-Supply to the heaters must be switched off before switching on the motor.
- **D.C. INJECTION**: (This method can only be used on motors of less than 30 kW)

An alternative to the use of anti-condensation heaters is to inject direct current into two of the phases wired in series from a D.C. Voltage source, which can give the total power, indicated in the table above.

To calculate the d.c.voltage, use the following relationship:

$$U_{(V)} = \sqrt{P_{(W)} * R_{(W)}}$$

Where R is the resistance of the windings in series.

Resistance should be measured with a suitable ohmmeter.

TESTS TO BE CONDUCTED ON INDUCTION MOTORS

ROUTINE TESTS

The following routine tests as per IS-325 are conducted on all motors;

- 1. Insulation resistance test
- Measurement of resistance of windings of stator and wound rotor with corresponding ambient temperature.
- 3. No-Load test
- 4. Locked rotor readings of voltage, current and power input at suitable reduced voltage.
- 5. Reduced voltage running up test (for squirrel cage motors)
- 6. Open circuit voltage ratio of stator and rotor windings (for slip ring motors)
- 7. High voltage test

TYPE TESTS

The following Type tests as per IS-325 are carried out;

- 1. Measurement of resistance of windings of stator and wound rotor with corresponding ambient temperature.
- 2. No load test at rated voltage to determine input current, power and speed.
- 3. Open circuit voltage ratio of wound rotor motors
- 4. Reduced voltage running up test at no load (for squirrel cage motors up to 37 kW only)
- 5. Locked rotor readings of voltage, current and power input at a suitable reduced voltage.
- 6. Full load test to determine efficiency, power factor and slip
- 7. Temperature rise test
- 8. Momentary overload test
- 9. Insulation resistance test.
- 10. High voltage test

ADDITIONAL TESTS

The following additional tests can also be carried out on request;

- *11.Test for vibration severity of motor on no-load.
- *12. Test for noise levels of motor on no-load.
- *13. Test for degree of protection by enclosure (For second numeral only).
- *14. Temperature rise test at limiting values of voltages.
- *15. Over speed test.

Note:

* Type test on vertical motors up to 30 kW will be conducted vertically on loading device and above 30 kW motors are tested with its respective/suitable pump coupled. Load test and temperature rise test will be conducted at maximum available load.

NOISE LEVEL:

The noise level of motors is restricted to the levels specified in IS 12065. Table below gives the noise level as per IS 12065.

Protecti		IP 22	IP 44	IP 22	IP 44	IP 22	IP 44	IP 22	IP 44	IP 22	IP 44	IP 22	IP 44
Ratin (or k	g kW (VA)					Rat	ed spe	ed (rev	/min)				
			0 & low	961 13	l to 20	_	1 to 00		11 to 360		61 to 50		51 to 750
Above	Up to					Soun	d powe	r level	dB (A)				
	1.1		76		79		80		83		84		88
1.1	2.2		79		80		83		87		89		91
2.2	5.5		82		84		87		92		93		95
5.5	11	82	85	85	88	88	91	91	96	94	97	97	100
11	22	86	89	89	93	92	96	94	98	97	101	100	103
22	37	89	91	92	95	94	97	96	100	99	103	102	105
37	55	90	92	94	97	97	99	99	103	101	105	104	107
55	110	94	96	97	101	100	104	102	105	104	107	106	109
110	220	98	100	100	104	103	106	105	108	107	110	108	112
220	630	100	102	104	106	106	109	107	111	108	112	110	114

- IP 22 corresponds generally to drip-proof, open ventilated & similar enclosures. IP 44 corresponds generally to totally enclosed fan-cooled, closed air circuit air-cooled, & similar Enclosures (see IS 4691).
 - The position of measurement points should be at intervals of not more than one meter from machine.

❖ VIBRATION:

The motor is said to be in state of free vibration if any part of it experiences displacement in any direction. Standard motors comply with normal class of vibration depend ending on severity as per IS 12075.

Vibration levels: Limits of vibration severity in rotating electrical machines measured in state of free suspension.

Shaft Height H, mm	56	to 132	16	0 to 225	22	5 & above
Range of speed (RPM)	600 to 1500	Above 1500 & upto 3000	600 to 1500	Above 1500 & upto 3000	600 to 1500	Above 1500 & upto 3000
Class of Vibration severity		RMS Va	alue of Vibr	ation Velocity, m	m/sec	
Normal	1.8	1.8	1.8	2.8	2.8	4.5
Precision A	0.71	0.71	0.71	1.12		
Precision B	0.45	0.45	0.45	0.71		
Precision C	0.28	0.28	0.28	0.45		

The vibration may be determined in rigid mounting condition but the value of Vibration severity shall be agreed by a special agreement between manufacturer & user. The double amplitude of vibration displacement, $a = 0.45 \ V_{rms}$ where, f = frequency of vibration in RPS.Fe.g. 25 Hz for 1500 RPM

f

			_					ı	
	: IP-55	: B3	IC-411		M-T	GRP	Š.	306	306
ORS			••		N-I N-L	GRP	ON:	11.0 104 204	204
MOT(CTION					GRP	o N	104	104
FEFC	DEG. OF PROTECTION	NG	<u>ග</u>		GD ₂	KG-M ²	.NONO.	11.0	12.0
PERFORMANCE DATA OF JYOTI CTF HORIZONTAL 2 POLE SQ.CAGE TEFC MOTORS	DEG. OF	MOUNTING	COOLING		WEIGHT	Ϋ́		029	0.90 0.86 0.75 1.50 6.50 1.80 2.30 7.50 1.2.0 1.04 2.04
E SQ.					TMX	% of	FL	230	230
POLI					IST TST TMX	% of % of % of	FLT	650 180 230	180
L 2					IST	% of	FLC	650	650
IZONTA	: S1	<u>ш</u> 	: 45°C	: 75°C	F		AMP	125	150
HOR		7			TOR	_	20	0.90 0.85 0.75	0.75
CTF	>	INSULATION	AMB. TEMP.	TEMP. RISE	POWER FACTOR	% LOAD	100 75 50	0.85	0.86
'OTI	DUTY	INSC	AMB	TEM	POW	0`	100	0.90	
F JY					ζ	0	20	90.0	0 06
TA C	10 %	. 0			EFFICIENCY	% LOAD	75	92.5 92.0 90.0	92.0
E DA	OLTS ±	s. ± 5 %		\ 0	出	0	100	92.5	92.5
MANCE	: 415 VOLTS \pm 10 %	FREQUENCY : 50 Hzs. ± 5 %		COMB. VARIT. : ± 10 %	F	Speed	RPM	2965	280M 2970 92.5 92.0 90.0
FORM	VOLTAGE	JUENCY	Ж	B. VARIT	KW Motor		CTF	280S	280M
PER	VOLT	FREG	PHASE	COM	×			75	06

2 2	NO+01				>			a CT	ū	FOI	FOL	>V4	WEIGHT	2	Z	2	*
2	Type	Speed	_ o`	FICIEINO 1 OAD	5 ~)))	FOWER FACTOR	2	Current	- % 50 %	- S	of %	; ; ;	KG-M²	GRP	GRP	
	CTF	RPM	100	75	50	100	75	20	AMP	FLC	FLT	FLT	S)	0 0	Ö.	ON:
75	280S	2965	92.5	92.0	90.0	06.0	0.85	0.75	125	099	180	230	029	11.0	104	204	306
06	280M	2970	92.5	92.0	90.0	0.90	0.86	0.75	150	650	180	230	750	12.0	104	204	306
110	315M	2975	93.0	92.5	90.5	0.90	0.86	0.78	183	200	180	230	086	21.0	104	205	308
132	315M	2975	93.0	92.5	90.0	0.90	0.86	0.78	219	700	180	230	1160	25.0	104	205	308
160	315L	2980	93.0	92.5	90.0	0.90	0.86	0.78	266	700	180	230	1280	30.0	104	205	308
180	355S	2980	93.5	93.0	91.0	0.90	0.87	0.78	297	200	180	230	1350	40.0.	104	205	316
200	355M	2980	93.5	93.0	91.0	0.91	0.87	0.78	327	200	160	250	1450	46.0	107	205	316
220	355M	2980	93.5	93.0	91.0	0.91	0.87	0.78	359	200	160	250	1450	46.0	107	205	316
250	355M	2980	93.5	93.0	91.0	0.91	0.87	0.78	408	700	150	200	1500	48.0	109	205	316
280	400M	2980	94.0	93.5	91.5	0.91	0.87	0.78	455	200	150	200	2300	50.0	109	205	316
300	400M	2980	94.0	93.5	91.5	0.90	0.87	0.78	493	200	150	200	2350	50.0	109	205	316
335	400M	2980	94.5	94.0	92.0	0.90	0.87	0.78	548	700	150	200	2400	52.0	109	205	316
355	400L	2985	94.5	94.0	92.0	0.90	0.88	0.80	580	200	150	200	2400	54.0	109	205	316
370	400L	2985	94.5	94.0	92.0	0.90	0.88	0.80	605	200	150	200	2450	96.0	109	205	316

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

VOLTAGE :415 VOLTS ± 10 % DUTY	<u> </u>	<u> </u>	<u> </u>		ᆚ	エ	ORIZ	HORIZONTAL :S1	4	OLE	SQ.C	POLE SQ.CAGE TEFC DEG. OF PROTECTION	TEFC MOTORS(EFF-1 TECTION : IP-55	O -	ORS(E): 1P-55	FF-1)
: 50 Hzs. ± 5 %	5.00	- - -	2	- –	INSULATION	NOIL		<u>.</u>			MOUNTING	TING	<u>.</u>	<u> </u>	B3	
				~ F	AMB. TEMP.	EMP.		: 50°C			COOLING	LING		<u>∪</u>	_	200
COMB. VARII. : ± 10 %					I EIVIP. KISE	חטוא		٠/٥٠				SIANDARD	L	2	. 13.323 , 13	13:12013
F.		H	EFFICIENCY	≿	POWI	POWER FACTOR	CTOR	FL	IST	TST	XWZ	WEIGHT	GD ₂	Z Ė	Z -	∧ -L
ando		^`	% LOAD	_		% LOAD		Callell	%	% of	5 H 8 E	Υ _G	Ą Ġ	GRP.	GRP	GRP
RPM		100	75	20	100	75	20	AMP	of FLC	FLT	_)	M_2	O	Ö.	Ö.
1475		94.5	93.5	92.5	0.88	0.84	0.74	113	002	200	275	029	11.0	102	205	308
1480		94.7	93.2	91.0	0.89	0.85	0.75	125	700	200	275	670	11.0	102	205	308
1480		95.0	93.5	91.5	0.90	0.86	0.78	148	700	200	275	750	12.0	102	205	308
1480		95.2	94.0	92.0	0.90	0.86	0.78	178	700	200	275	980	21.0	102	205	308
1485		95.5	95.0	93.5	0.90	0.86	0.78	202	009	200	275	1160	25.0.	102	203	302
1485		95.5	95.0	93.5	0.90	0.86	0.78	214	009	200	275	1160	25.0	102	203	302
1485		95.5	95.0	93.5	0.90	0.88	0.80	245	650	200	300	1250	28.0	111	204	305
1485		95.8	95.0	93.5	0.90	0.88	0.80	260	029	200	300	1280	30.0	111	204	305
1485		92.8	95.2	94.0	0.90	0.87	0.78	290	029	180	300	1350	40.0	105	204	306
1485		95.8	95.0	94.0	0.90	0.87	0.78	324	029	180	300	1450	46.0	105	204	306
1485		95.8	95.2	94.0	0.90	0.87	0.78	356	029	180	300	1450	46.0	105	204	306
1485		95.8	95.2	94.0	0.90	0.87	0.78	404	650	180	300	1500	48.0	105	204	306
1485		95.8	95.2	94.0	0.90	0.88	0.82	452	650	200	300	2000	45.0	114	204	306
1485		96.0	95.5	94.0	0.90	0.88	0.82	484	650	200	300	2075	48.0	114	204	306
1485		96.0	95.5	94.0	0.30	0.88	0.82	508	650	200	300	2075	48.0	114	204	306
1485		96.0	95.5	94.0	06.0	0.87	0.78	540	650	180	250	2400	52.0	106	204	307
1490		96.0	95.5	94.5	0.90	0.88	0.80	572	650	150	275	2400	54.0	110	204	307
1490		96.0	92.5	94.5	0.90	0.88	0.80	596	650	150	275	2450	26.0	110	204	307
1490		96.0	92.5	94.5	0.90	0.88	0.80	644	029	150	275	2450	0.09	110	204	307
1490		96.0	95.5	94.5	0.90	0.88	0.80	725	650	150	275	2500	65.0	110	204	307

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

PE	PERFORMANCE DATA OF JYOT	ANCE	DAT/	^ OF	JYO	TI CTF		DRIZC	HORIZONTAL	4 P(POLE !	SQ.CAGE		TEFC M	MOTORS(EFF-2)	S(EFI	F-2)
Ю Х	VOLTAGE	: 415 VOLTS \pm 10 %	.TS ± 10	% (DUTY			: S1			DEG. OF	F PROTECTION		: IP-55	25	1
FRE	FREQUENCY	: 50 Hzs. \pm 5 %	∓ 2 %		=	INSULATION	NOIL		<u>ш</u>		- -	MOUNTING	ING		: B3		
PH	PHASE	.3			1	AMB. TEMP.	EMP.		: 50°C		,	COOLING	<u>១</u>		: IC-411	111	
8	COMB. VARIT. : ± 10 %	: ± 10 %			_	TEMP. F	SISE		: 70°C		-	REF ST,	REF STANDARD		: IS:3	: IS:325 , IS:12615	12615
×	Motor	႕		EFFICIENCY	CY	POWI	POWER FACTOR	CTOR	긥	IST	TST	XMT	WEIGHT	GD ₂	Z-L	Z -	M-T
	Type	Speed		% LOAD	<u></u>	o`	% LOAD	_	Current	%	% of	% of	ž	Ж С	GRP.	GRP	GRP
	CTF/CUTF	RPM	100	75	20	100	22	20	AMP	of	된	FL	<u>.</u>	M^2	ON	Ö.	Ö.
										FLC							
29	280S	1475	93.2	93.0	92.0	0.88	0.84	0.74	114	002	200	275	029	11.0	102	205	308
75	280S	1480	94.0	92.5	90.5	0.89	0.85	0.75	125	700	200	275	670	11.0	102	205	308
06	280M	1480	94.5	93.0	91.0	0.90	98.0	0.78	148	002	200	275	750	12.0	102	205	308
110	315M	1480	94.5	93.5	91.5	06.0	98.0	0.78	180	002	200	275	980	21.0	102	205	308
125	315M	1485	95.0	94.5	93.0	0.90	98.0	0.78	204	009	200	275	1160	25.0.	102	203	302
132	315M	1485	95.0	94.5	93.0	06.0	98.0	0.78	215	009	200	275	1160	25.0	102	203	302
150	315L	1485	95.0	94.5	93.5	06.0	88.0	0.80	245	099	200	300	1250	28.0	111	204	305
160	315L	1485	95.0	94.5	93.5	06.0	88.0	0.80	260	029	200	300	1280	30.0	111	204	305
180	3558	1485	95.0	94.5	93.5	0.90	0.87	0.78	294	650	180	300	1350	40.0	105	204	306
200	355M	1485	95.5	95.0	94.0	0.90	0.87	0.78	324	029	180	300	1450	46.0	105	204	306
220	355M	1485	95.5	95.0	94.0	0.90	0.87	0.78	356	029	180	300	1450	46.0	105	204	306
250	355M	1485	92.5	95.0	94.0	0.90	0.87	0.78	405	650	180	300	1500	48.0	105	204	306
280	355L	1485	92.5	95.0	94.0	0.90	0.88	0.82	454	650	180	300	2000	45.0	114	204	306
300	355L	1485	96.0	95.5	94.0	0.90	0.88	0.82	484	650	180	300	2075	48.0	114	204	306
315	355L	1485	0.96	92.5	94.0	0.90	0.88	0.82	508	650	180	300	2075	48.0	114	204	306
335	400M	1485	96.0	92.5	94.0	0.90	0.87	0.78	540	650	180	250	2400	52.0	106	204	307
355	400L	1490	96.0	92.5	94.5	0.90	0.88	0.80	572	650	150	275	2400	54.0	110	204	307
370	400L	1490	0.96	92.5	94.5	0.90	0.88	0.80	596	650	150	275	2450	56.0	110	204	307
400	400L	1490	0.96	92.5	94.5	0.90	0.88	0.80	644	650	150	275	2450	60.0	110	204	307
450	400L	1490	96.0	95.5	94.5		0.88	0.80	725	650		275	2500	65.0	110	204	307
NOTE:	NOTE: THE ABOVE PERFORMANCES ARE SUB	Æ PERFC	RMAN	ICES AI	RE SUB		D TO T	OLER	IECTED TO TOLERANCES GIVEN IN	(VEN II	N IS: 325	325.					

PERFORN	PERFORMANCE DATA OF JY	JYOTI CTF	HORIZONTAL	OTI CTF HORIZONTAL 6 POLE SQ.CAGE TEFC MOTORS (EFF-1	FC MOT	JRS (EFF-1)
VOLTAGE	: 415 VOLTS \pm 10 %	DUTY	: \$1	DEG. OF PROTECTION		: IP-55
FREQUENCY	FREQUENCY : 50 Hzs. ± 5 %	INSULATION	ш 	MOUNTING		: B3
PHASE	3	AMB. TEMP.	: 50°C	COOLING	••	: IC-411
COMB. VARIT. : ± 10 %	: ± 10 %	TEMP. RISE	: 70°C	REF. STANDARD	: IS:325	IS:325 , IS:12615

	M-T	GRP	.NO.	301	301	302	302	302	302	302	302	303	303	303	303	303	303	303	303	303	303	303	303
2012	N-I	GRP	NO.	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203
. 10.323 , 10.1201	N-T	GRP	.NO.	102	102	106	106	106	102	102	102	102	102	102	102	115	115	106	106	106	106	106	106
0.0	GD ₂	KG-M ²		10.5	15.0	21.0	21.0	25.0.	28.0	32.0	32.0	40.0	40.0	44.0	48.0	62.0	65.0	60.0	65.0	65.0	70.0	70.0	70.0
חיות	WEIGHT	X	.6	009	069	930	930	950	086	1020	1020	1460	1460	1550	1600	2125	2200	2350	2450	2450	2550	2550	2550
	TMX	% of	FLT	300	300	250	250	250	275	275	275	300	300	300	300	280	280	250	250	250	250	250	250
-	TST	% of	FLT	200	200	180	180	180	200	200	200	200	200	200	200	180	180	180	180	180	180	180	180
	ISI	% of	FLC	009	009	009	009	600	009	600	009	009	009	009	009	009	600	600	600	009	600	009	009
	FL	Current	AMP	80	96	118	132	158	194	218	230	262	280	314	342	378	428	483	514	540	575	809	634
	STOR	_	50	0.70	0.70	0.72	0.72	0.68	0.68	0.68	0.68	0.67	0.67	0.67	0.70	0.75	0.75	0.70	0.70	0.70	0.70	0.70	0.70
JOL	POWER FACTOR	% LOAD	75	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.78	0.78	0.78	0.80	0.81	0.81	0.80	0.80	0.80	0.80	0.80	0.80
. LIVII . IVIOL	POWI	0,	100	0.85	0.85	0.85	0.85	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
•	λz	_	50	90.0	91.5	91.5	92.0	91.5	92.0	92.5	92.5	92.6	97.6	93.5	94.0	94.0	93.5	93.5	93.5	93.5	93.5	93.5	93.5
	EFFICIENCY	% LOAD	75	92.8	93.0	93.0	93.5	94.0	94.0	94.5	94.5	94.5	94.5	94.5	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0
	EF	6	100	93.4	93.8	93.8	94.2	94.5	94.6	95.0	95.0	95.0	95.0	95.0	95.5	95.5	95.5	95.5	95.5	95.5	95.5	92.6	92.6
0/ 01 -	FL	Speed	RPM	980	980	985	985	985	985	985	985	985	985	985	990	066	990	990	990	990	990	066	066
OUND. VAIN 1	Motor	Type	CTF/CUTF	280S	280M	315M	315M	315M	315L	315L	315L	355M	355M	355M	355M	355L	355L	400L	400L	400L	400L	400L	400L
	KW			45	22	29	75	06	110	125	132	150	160	180	200	220	250	280	300	315	335	355	370
	_		_	· <u>-</u>	· <u>-</u>	· <u>-</u>	· <u>-</u>	_	-	_	-	-	-	-	-				-	-	_	_	_

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

PEF	FORM	PERFORMANCE DATA OF JYOTI CTF	DAT/	NOF	JYO	ວ ⊏		ORIZO	HORIZONTAL	8 POLE		SQ.CAGE	E TEFC MOTORS (EFF-1)	OW :	TORS	(EFF	- -
NOL	VOLTAGE	: 415 VOLTS \pm 10 %	TS ± 1(% (J	DUTY			: S1		DE	:G. OF F	DEG. OF PROTECTION	NC	: IP-55	2	
FRE	FREQUENCY	: 50 Hzs. \pm 5 %	7 2 % ∓		_	NSULA	NOIL		ш. 		M	MOUNTING	45		: B3		
PHASE	SE	3			1	AMB. TEMP.	EMP.		: 50°C		S	COOLING			: IC-411	11	
CON	COMB. VARIT. : ± 10 %	: \pm 10 %			Γ-	remp.	RISE		: 70°C		RE	REF. STANDARD	DARD		: 18:32	: IS:325, IS:12615	2615
×	Motor	FL	Ш	EFFICIENCY	√C \	POW	POWER FACTOR	CTOR	FL	IST	TST	TMX	WEIGH	GD ²	N-T	۲ (W-T
	CTF/CUT		100	% LOAD 75	50	100	% LOAD 75	50 20	AMP	% of FLC	% of FLT	FLT	-	Ş ₹			3 N. O.
	L	X L											Kg.				
37	280S	730	91.9	91.5	89.5	0.77	0.72	0.60	73	600	200	250	670	9.0	103	203	301
45	280M	735	92.4	91.5	89.5	0.78	0.73	0.60	87	009	200	250	750	12.0	103	203	301
22	315M	740	92.8	92.0	89.0	0.73	0.70	0.55	114	250	180	250	086	20.0	106	202	312
29	315M	740	92.8	92.0	89.0	0.73	0.70	0.55	138	250	180	250	1050	23.0	106	202	312
75	315M	740	93.5	92.5	89.5	0.73	0.70	0.55	154	550	180	250	1160	26.0	106	202	312
06	315L	740	93.9	93.5	91.0	0.73	0.70	0.56	182	250	160	250	1250	37.0	106	202	312
110	315L	740	94.3	93.5	92.0	0.74	0.70	0.56	220	200	160	250	1280	60.0	106	201	313
125	3558	740	94.7	94.0	90.8	0.74	0.70	0.56	245	009	180	250	1350	72.0	106	203	303
132	3558	740	94.7	94.0	8.06	0.74	0.70	0.56	260	009	180	250	1450	72.0	106	203	303
160	355M	740	94.8	94.5	92.5	0.82	0.78	0.70	286	200	160	250	1450	80.0	107	201	314
180	355L	740	94.8	94.5	92.5	0.82	0.78	0.72	322	009	160	260	2150	62.0	116	116	303
200	355L	743	95.0	94.5	92.5	0.82	0.78	0.72	358	009	160	260	2165	0.99	116	116	303
220	355L	743	95.0	94.5	92.5	0.82	0.78	0.72	394	009	160	260	2275	72.0	116	116	303
250	400L	745	95.0	94.5	92.5	0.84	0.80	0.75	436	009	160	250	2400	90.0	107	203	303
			•														

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

PERFORMAN	PERFORMANCE DATA OF JYO	JYOTI CTF H	ORIZONTAL)TI CTF HORIZONTAL 8 POLE SQ.CAGE TEFC MOTORS (EFF-2)	C MOTORS (EFF-2)
VOLTAGE : 47	: 415 VOLTS \pm 10 %	DUTY	: S1	DEG. OF PROTECTION	TION : IP-55
FREQUENCY : 50 Hzs. ± 5 %	0 Hzs. ± 5 %	INSULATION	<u>ш</u> 	MOUNTING	: B3
PHASE :3		AMB. TEMP.	: 50°C	COOLING	: IC-411
COMB. VARIT. : ± 10 %	10 %	TEMP. RISE	: 70°C	REF. STANDARD	: IS:325 , IS:12615

×	Motor	7	EF	EFFICIENCY	ζ	POWE	POWER FACTOR)TOR	7	IST	TST	TMX	WEIGHT	GD2	Z-L	Z -	M-T
	Type	Speed	o` 	% LOAD	_	0	% LOAD		Current	of %	% of	% of	ž	KG-M ²	GRP	GRP	GRP
	CTF/CUTF	RPM	100	75	20	100	75	20	AMP	FLC	FLT	님	<u>.</u>		NO.	Š.	o O N
			•	•				ę.									
37	280S	730	91.5	91.0	89.0	0.77	0.72	0.60	73	009	200	250	670	9.0	103	203	301
45	280M	735	92.0	91.0	89.0	0.78	0.73	09.0	87	009	200	250	750	12.0	103	203	301
22	315M	740	92.5	91.5	88.5	0.73	0.70	0.55	114	250	160	250	086	20.0	106	202	312
29	315M	740	92.5	91.5	88.5	0.73	0.70	0.55	138	250	160	250	1050	23.0	106	202	312
75	315M	740	92.5	91.5	88.5	0.73	0.70	0.55	155	250	180	250	1160	26.0.	106	202	312
06	315L	740	93.0	92.5	90.0	0.73	0.70	0.56	180	250	160	250	1250	37.0	106	202	312
110	315L	740	93.5	93.0	91.5	0.74	0.70	0.56	220	200	160	250	1280	0.09	106	201	313
125	3558	740	94.0	93.2	90.0	0.74	0.70	0.56	248	009	160	250	1350	72.0	106	203	303
132	3558	740	94.0	93.2	90.0	0.74	0.70	0.56	262	009	160	250	1450	72.0	106	203	303
160	355M	740	94.5	94.0	92.0	0.82	0.78	0.70	288	200	160	250	1450	0.08	107	201	314
180	355L	740	94.5	94.0	92.0	0.82	0.78	0.72	324	009	160	260	2150	62.0	116	116	303
200	322L	743	94.5	94.0	92.0	0.82	0.78	0.72	360	009	160	260	2165	0.99	116	116	303
220	355L	743	94.5	94.0	92.0	0.82	0.78	0.72	395	009	160	260	2275	72.0	116	116	303
250	400L	745	0.36	94.5	92.5	0.84	0.80	0.75	436	009	160	250	2400	0.06	107	203	303

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

PERFORM	PERFORMANCE DATA OF JYC	JYOTI CVTF	VERTICAL	OTI CVTF VERTICAL 4 POLE SQ.CAGE TEFC MOTORS	
VOLTAGE	: 415 VOLTS \pm 10 %	DUTY	: S1	DEG. OF PROTECTION	: IP-55
FREQUENCY	FREQUENCY : 50 Hzs. ± 5 %	INSULATION	ш 	MOUNTING	. \
PHASE	.: 3	AMB. TEMP.	: 45°C	COOLING	: IC-411
COMB. VARIT. : + 10 %	.:+10%	TEMP. RISE	: 75°C		

T-W GRP .NO.	305	302	308	305	305	302	302	316	303	306	303	303	303	303
GRP . O	204	203	205	204	204	203	203	205	203	204	203	203	203	203
T-N GRP. NO.	102	102	102	101	102	102	102	102	102	101	102	102	102	105
GD ² KG-M²	11.0	12.0	20.0	23.0	23.0	25.0	25.0	65.0	68.0	68.0	76.0	85.0	85.0	90.0
WEIGH ⊤ Kg.	750	780	1250	1300	1300	1350	1350	1600	1650	1650	1750	1800	1850	1850
TMX % of FLT	275	275	275	275	275	275	275	275	275	275	275	275	275	300
TST % of FLT	200	200	200	220	200	200	200	200	200	220	200	200	200	180
IST % of FLC	029	009	700	029	029	009	009	700	009	029	009	009	009	009
FL Curren t AMP	128	155	183	207	220	250	265	300	332	362	411	456	495	510
TOR 50	0.74	0.74	0.78	0.78	0.78	0.78	0.78	0.78	0.80	0.80	0.82	0.82	0.82	0.82
OWER FACTOR % LOAD 00 75 50	0.81	0.84	0.86	0.86	0.86	0.86	0.85	0.86	0.85	0.86	0.86	0.88	0.87	0.88
POWE	0.88	0.88	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.89	06.0
50	89.0	89.0	90.5	90.5	91.0	91.0	90.0	90.0	90.0	92.0	92.5	93.5	93.5	93.5
EFFICIENCY % LOAD 10 75	91.0	91.0	92.0	92.0	92.0	92.0	92.0	92.5	92.5	93.0	93.5	94.5	94.5	95.0
EFI 100	92.0	92.0	93.0	93.0	93.0	93.0	93.0	93.5	93.5	94.0	94.0	95.0	95.0	95.5
FL Speed RPM	1480	1480	1480	1485	1485	1480	1480	1480	1480	1485	1480	1485	1485	1485
Motor Type CVTF	280	280	315	315	315	315	315	355	355	355	355	355	355	355
X	75	90	110	125	132	150	160	180	200	220	250	280	300	315

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

	55	_	: IC-411		M-T	GRP	Ö.	309	309	312	312	302	302	302	302	303	
	: IP-55		<u></u>		Z -	GRP	Š.	201	201	202	202	203	203	203	203	203	
ORS	NO!				N-L	GRP	o O	104	104	104	103	104	102	102	102	102	
MOT	ROTECT				GD ²	KG-M ²		8.0	16.0	20.0	23.0	26.0	28.0	32.0	32.0	50.0	
II CVTF VERTICAL 6 POLE SQ.CAGE TEFC MOTORS	DEG. OF PROTECTION	MOUNTING	COOLING		WEIGHT	Κġ)	525	985	1050	1275	1350	1350	1350	1400	1500	
.CAG					TMX	ا کر ا چ	7	230	230	230	250	230	275	275	275	275	
E SQ					TST	: % : %	7	180	180	180	200	180	200	200	200	200	
3 POL					IST	o i %	S LC	200	009	099	029	009	009	009	009	009	
TCAL (: S1	<u>ц</u>	: 45°C	: 75°C	IJ	Current	AMP	82	100	122	133	161	195	222	234	267	
VERI					CTOR		20	0.70	0.75	0.75	0.74	0.76	0.68	0.68	0.68	0.74	
VTF		ATION	FMP.	RISE	POWER FACTOR	% LOAD	75	0.80	08'0	08'0	08'0	0.82	0.80	080	0.80	62.0	
OTI C	DUTY	INSULATION	AMB. 1	TEMP. RISE	MOA	0.	100	0.84	0.84	0.84	98.0	0.84	0.84	0.84	0.84	0.84	
: JYC					СУ	0	20	88.0	0'88	98.5	0.68	91.0	91.0	91.0	91.0	91.0	
A 0	% 01				EFFICIENCY	% LOAD	75	90.5	90.5	90.5	91.0	92.0	93.0	93.0	93.0	92.5	
DAT	415 VOLTS \pm 10 %	$\pm 5\%$			岀		100	91.0	91.0	91.0	92.0	92.5	93.5	93.5	93.5	93.0	
PERFORMANCE DATA OF JYOI	: 415 VC	: 50 Hzs. \pm 5 %	e: .	COMB. VARIT. : ± 10 %	J	Speed	RPM M	985	985	985	985	985	985	985	985	985	
FORM	√GE	FREQUENCY	111	VARIT.	Motor	Type	CVTF	280	280	315	315	315	315	315	315	355	
PER	VOLTAGE	FREQ	PHASE	COMB	×			45	22	29	75	06	110	125	132	150	

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

0.09

0.74

0.79

0.84

92.0

93.5

93.0

0.09

0.74

0.79

0.84

92.0

93.5

94.0

85.0

0.75

0.80

0.85

92.5

94.0

94.5

90.0

0.79

0.84

0.88

93.0

94.5

95.0

85.0

0.78

0.83

0.87

93.0

94.5

95.0

	.23	~	-01		M-T	GRP		O	301	301	301	301	301
4.0	: IP-23	: B3	: IC-01		Z-	GRP		NO.	203	203	203	203	203
rors	NOI				N-L	GRP		NO.	106	102	106	106	105
MO	ROTECT				GD2	KG-	M^2		7.0	7.5	7.5	9.0	14.0
SE SPDI	DEG. OF PROTECTION	MOUNTING	COOLING		WEIGHT	Ka.			720	780	780	850	006
CAC					TMX	۱ځ i%	_		250	275	250	250	300
E SC					TST	ı oğ i %			180	200	180	180	180
POL					IST	i % of	S S	ile.	600	009	600	600	009
ITAL 4	: S1	<u>ш</u>	: 45°C	: 75°C	FL	Current	AMP		185	212	224	255	272
IZON					TOR		50		0.74	0.73	0.73	0.73	0.73
HOF		NOI	MP.	ISE	POWER FACTOR	% LOAD	75		0.85	0.85	0.85	0.85	0.85
II CD	DUTY	NSULATION	AMB. TEMP.	EMP. RISE	POWE	0`	100		0.88	0.88	0.88	0.88	0.88
JYOI		∠	∢	_	λ	_	20		89.5	0.06	90.0	90.0	0.06
OF	%				EFFICIENCY	% LOAD	100 75		91.5	92.5	92.5	92.5	92.5
JATA	-S ± 10	2 %			出	o`	100		92.0	93.0	93.0	93.0	93.0
NCE [: 415 VOLTS \pm 10 %	50 Hzs. ±		10 %	FL	Speed	RPM		1470	1470	1470	1475	1480
PERFORMANCE DATA OF JYOTI CD HORIZONTAL 4 POLE SQ.CAGE SPDP MOTORS		FREQUENCY : 50 Hzs. ± 5 %	.:	COMB. VARIT. : ± 10 %	Motor	Type	CD/ CND		280S	280M	280M	280M	315S
PER	VOLTAGE	FREQ	PHASE	COME	××				110	125	132	150	160

302
203
108
29.0
2000
300
160
009
909
0.85
0.88
06.0
92.5
93.5
94.0
1480
355L
370

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

302

203

105

17.0

1040

300

180

009

338

0.75

0.85

0.88

90.5

92.5

93.5

1480

315M

200

105

14.5

950

300

180

009

306

0.73

0.85

0.88

90.0

92.5

93.0

1475

315M

180

302

105

20.0

1100

300

180

009

372

0.75

0.85

0.88

3

90.

Ŋ. 92.

93.5

1480

315L

220

302

105

25.0

1180

300

180

009

423

0.75

0.85

0.88

90.5

92.5

93.5

1480

315L

250

302

203

105

30.0

1350

300

180

009

474

0.75

0.85

0.88

90.5

92.5

93.5

1480

315L

280

302

110

32.0

1750

275

150

900

493

0.85

0.88

0.90

92.0

93.0

94.0

1480

355S

300

302

203

110

32.0

1750

275

150

009

518

0.85

0.88

0.90

92.0

93.0

94.0

1480

3558

315

302

110

38.0

1900

275

150

009

551

0.85

0.88

0.90

92.0

93.0

94.0

1480

355M

	~		_	T-W GRP .NO.	310	310	310	318	318	318	318	318	302	302	302	302
	: IP-23		<u>)</u>	A B ON.	201	201	201	201	201	201	201	201	203	203	203	203
ORS	Z			T-N GRP .NO.	103	103	103	105	105	105	105	105	108	108	108	108
SPDP MOTORS	ЭТЕСТІС			GD ² KG-M ²	12.8	13.3	15.5	32.0	41.0.	41.0	44.0	44.0	48.0	50.0	56.0	64.0
	DEG. OF PROTECTION			WEIGHT Kg.	625	650	720	006	1150	1150	1200	1200	1400	1450	1500	1550
.CAG		≥ ()	TMX % of FLT	250	250	250	300	300	300	300	300	300	300	300	300
E SQ				TST % of FLT	200	200	200	180	180	180	180	180	160	160	160	160
6 POLE SQ.CAGE				IST % of FLC	500	500	500	500	500	500	500	500	600	600	600	600
HORIZONTAL 6		T	: 75°C	FL Current AMP	115	140	165	197	224	236	269	286	317	352	385	438
RIZOF				STOR 50	0.68	0.68	0.68	0.70	0.70	0.70	0.70	0.70	0.72	0.72	0.72	0.72
HOI	2	2 2 2 2	.ISE	POWER FACTOR % LOAD 100 75 50	0.80	0.78	0.78	0.80	0.80	0.80	0.80	0.80	0.82	0.82	0.82	0.82
п ср	DUTY	INSULATION	TEMP. RISE	POWI	0.85	0.82	0.82	0.84	0.84	0.84	0.84	0.84	0.85	0.85	0.85	0.85
JYO-	<u> </u>	= <	\ -	CY 0	89.0	89.0	90.5	90.0	90.0	90.0	90.0	90.0	91.0	91.0	91.0	91.5
OF	%			EFFICIENCY % LOAD 0 75	90.5	90.5	92.0	92.0	92.0	92.0	92.0	92.0	92.5	92.5	92.5	93.0
DATA	TS ± 10	% C		EF , 100	91.5	91.0	92.5	92.5	92.5	92.5	92.5	92.5	93.0	93.0	93.5	93.5
NCE	: 415 VOLTS ± 10 %	: 50 HZS. ± 5 % · 3	± 10 %	FL Speed RPM	980	980	980	980	980	980	980	980	990	990	990	990
PERFORMANCE DATA OF JYOI	2	FINC	VARIT.	Motor Type CD/CUD	280S	280S	280M	315S	315M	315M	315L	315L	3558	355M	355L	355L
PER	VOLTAGE	FKEQU PH A Ω FI	COME	K	29	75	06	110	125	132	150	160	180	200	220	250

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

PER	FORM	ANCE	PERFORMANCE DATA OF JY	JYOTI C	YOTI CVD VERTICAL 4 POLE SQ.CAGE SPDP MOTORS	ICAL 4	POL	E SQ.C	AGE SP	DP MO	TORS		
VOLT	/OLTAGE	: 415 VC	: 415 VOLTS \pm 10 %	DUTY		: S1			DEG. 0	DEG. OF PROTECTION	CTION	: IP-23	က္သ
FREG	FREQUENCY : 50 Hzs. ± 5 %	: 50 Hzs.	. ± 5 %	INSULATION	NOIL	<u>њ</u> 			MOUNTING	.ING		. \	
PHASE	Ή.			AMB. TEMP.	≣MP.	: 45°C			COOLING	ญี		: IC-01	7
COM	COMB. VARIT. : ± 10 %	: ± 10 %		TEMP. RISE	RISE	: 75°C							
×	KW Motor	F	EFFICIENCY	POWE	POWER FACTOR	긥	IST	TST TIV	IST TST TMX WEIGH GD ²	GD ₂	N-L	Z -	Ĺ
	T	Tyne Speed	(%	% I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Current	% of	% of %	ا	2	(((

T-W GRP. NO.	301	301	301	301	301	302	302	302	302	302	302	302	302	302	302
I-N GRP. NO.	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203
T-N GRP. NO.	106	106	106	106	107	110	110	110	110	110	110	110	110	110	110
GD ² KG- M ²	7.0	7.4	7.8	8.5	15.0	17.5	22.0	24.0	25.0	30.0	32.0	32.0	38.0	59.0	59.0
WEIGH T Kg.	700	740	760	800	1000	1250	1360	1400	1450	1600	1750	1800	1900	2000	2000
TMX % of FLT	250	250	250	250	250	275	275	275	275	275	275	275	275	275	275
TST % of FLT	180	180	180	180	160	150	150	150	150	150	150	150	150	150	150
IST % of FLC	009	009	009	009	009	600	600	600	600	600	600	009	600	600	009
FL Current AMP	187	208	220	250	268	306	340	374	422	474	496	533	550	287	909
STOR) 50	0.80	0.82	0.82	0.82	0.82	0.75	0.75	0.75	0.75	0.75	0.80	0.75	0.80	0.82	0.85
WER FACTOR % LOAD 0 75 50	98.0	0.88	0.88	0.88	0.88	0.85	0.85	0.85	0.85	0.85	0.88	0.85	0.88	0.88	0.88
POW 100	0.88	06.0	06.0	06.0	06.0	0.88	0.88	0.88	0.88	0.88	06.0	0.88	06.0	06.0	06.0
CY) 50	90.0	90.0	90.0	91.0	91.0	91.0	91.0	91.0	91.0	91.0	92.0	91.5	92.0	92.5	92.5
EFFICIENCY % LOAD 0 75	91.5	91.5	91.5	92.5	92.5	92.5	92.5	93.0	93.0	92.5	93.5	93.5	93.5	93.5	93.5
EF 6	93.0	93.0	93.0	93.0	93.0	93.0	93.5	93.5	93.5	93.5	94.0	94.0	94.0	94.0	94.0
FL Speed RPM	1465	1465	1465	1475	1475	1475	1480	1480	1480	1480	1480	1480	1485	1480	1480
Motor Type CVD	280	280	280	280	280	315	315	315	315	315	355	355	355	355	355
KW	110	125	132	150	160	180	200	220	250	280	300	315	335	355	370

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

PER	FORM	ANCE	PERFORMANCE DATA OF JY	JYOTI CV	ID VERI	FICAL (6 POLE	SQ.CA	YOTI CVD VERTICAL 6 POLE SQ.CAGE SPDP MOTORS	MOTO	ORS		
VOLTAGE	4GE	: 415 VC	: 415 VOLTS \pm 10 %	PUTY		: S1			DEG. OF PROTECTION	PROTECT	NOI	: IP-23	ಟ
FREQ	UENCY	FREQUENCY : 50 Hzs. \pm 5 %	. ± 5 %	INSULATION	NOIT	<u>њ</u> 			MOUNTING	ڻ ن			
PHASE	ш			AMB. TEMP	:MP.	: 45°C			COOLING			: IC-01	5
COME	3. VARIT.	COMB. VARIT. : ± 10 %		TEMP. RISE	SISE	: 75°C							
×	KW Motor	F	EFFICIENCY	POWER	POWER FACTOR	F	IST	TST TM.	FL IST TST TMX WEIGHT GD ² T-N I-N T-V	GD ₂	Z- L	Z -	Λ <u>-</u> Τ

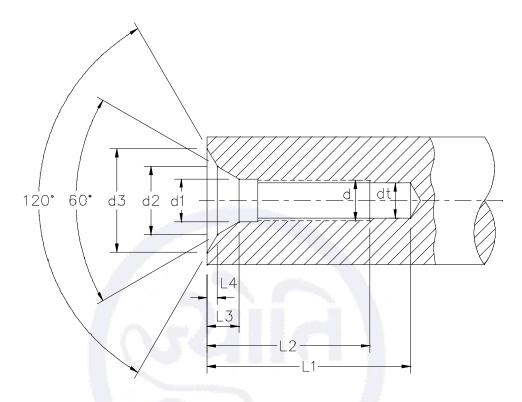
××	Motor Type	FL Speed	H °	EFFICIENCY % I OAD	> د	POW	POWER FACTOR	CTOR	FL Current	IST % of	TST % of	TMX % of	WEIGHT	GD ² KG-M ²	N-T GRP	N-I	N-T G
	CVD	RPM	, 00	75	50	, 001	75	20	AMP	FLC	FT	FLT	Kg.	2	0 2 3	ON:	5 Q O
67	280	980	92.0	91.5	89.5	0.82	0.78	0.67	125	500	180	250	720	12.8	106	201	310
75	280	980	92.0	91.5	89.5	0.86	0.82	0.70	128	500	180	250	760	14.5	106	201	310
90	280	980	93.0	92.5	91.0	0.86	0.82	0.70	156	500	180	250	780	15.5	106	201	310
110	315	980	93.0	92.5	91.0	0.84	0.80	0.70	196	500	180	300	940	20.0	105	201	318
125	315	086	92.5	92.0	90.0	0.84	08.0	0.70	224	200	180	300	1050	23.0	105	201	318
132	315	980	92.5	92.0	90.0	0.84	08.0	0.70	236	500	180	300	1050	23.0	105	201	318
150	315	086	93.0	92.5	90.0	0.85	0.80	0.70	262	009	180	300	1200	29.0	105	203	302
160	355	985	93.0	92.5	91.0	0.85	0.82	0.72	282	009	160	300	1350	41.0	108	203	302
180	355	066	93.0	92.5	91.0	0.85	0.82	0.72	317	009	160	300	1400	48.0	108	203	302
200	355	990	93.5	93.0	92.0	0.85	0.82	0.72	350	600	160	300	1450	50.0	108	203	302
220	355	066	93.5	93.0	92.0	0.85	0.82	0.72	387	009	160	300	1500	56.0	108	203	302
250	355	066	93.5	93.0	92.0	0.86	0.82	0.72	438	600	160	300	1550	64.0	108	203	302

NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

PERFORMANCE DATA OF JYOTI WD HORIZONTAL 4 POLE SLIP-RING MOTORS

GRP. 302 302 302 302 302 302 302 302 302 302 302 302 302 302 : B3 : IC-01 GRP. 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 GRP. 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 DEG. OF PROTECTION 15.0 20.0 20.0 21.0 23.0 24.0 25.0 26.0 26.0 30.0 32.0 32.0 52.0 Ŋ Ā <u>Ā</u> S 95. 95. MOUNTING WEIGHT COOLING 1050 1100 1350 1400 1400 1800 2100 2100 1100 1180 810 260 810 850 890 Ą ġ ROTOR CURREN AMP. 160 346 370 372 386 415 378 395 395 334 392 380 420 327 411 NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325, ROTOR VOLTAGE VOLTS 415 230 230 310 335 440 475 475 475 535 535 270 260 290 360 : 75°C : 45°C њ .. FL Current AMP 196 234 252 269 308 342 374 425 473 533 563 584 809 221 507 INSULATION AMB. TEMP. TEMP. RISE POWER FACTOR % LOAD 92.0 0.78 0.80 92.0 0.76 92.0 92.0 92.0 92.0 0.78 0.72 0.72 0.72 0.80 92.0 20 0.88 98.0 98.0 0.88 0.82 0.82 0.82 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 100 0.90 0.88 0.90 0.86 98.0 0.86 0.88 0.88 0.90 0.90 0.88 0.88 0.88 0.88 0.88 EFFICIENCY (%) LOAD 88.5 91.0 91.0 91.0 91.0 91.5 91.5 89.0 89.0 90.5 91.0 91.0 91.0 91.0 91.5 20 93.5 90.5 91.0 91.0 91.5 91.5 92.0 92.0 92.0 92.0 93.0 93.0 93.0 93.5 93.5 : 415 VOLTS \pm 10 % 75 FREQUENCY : 50 Hzs. ± 5 % 94.0 91.5 94.0 91.0 91.5 92.0 92.0 92.5 92.5 93.0 93.5 93.5 93.5 93.0 94.0 100 COMB. VARIT. : ± 10 % FL Speed 1480 RPM 1470 1470 1470 1470 1475 1480 1480 1480 1480 1480 1480 1485 1485 1480 280M 280M 355M Motor Type 280S 280M 315M 315M 3558 355M 315S/ M 3558 355L 355L 315L 315L MD VOLTAGE PHASE 110 125 132 220 300 315 335 355 150 160 180 200 250 280

PERFORMANCE DATA OF JYOTI WD HORIZONTAL 6 POLE SLIP-RING MOTORS

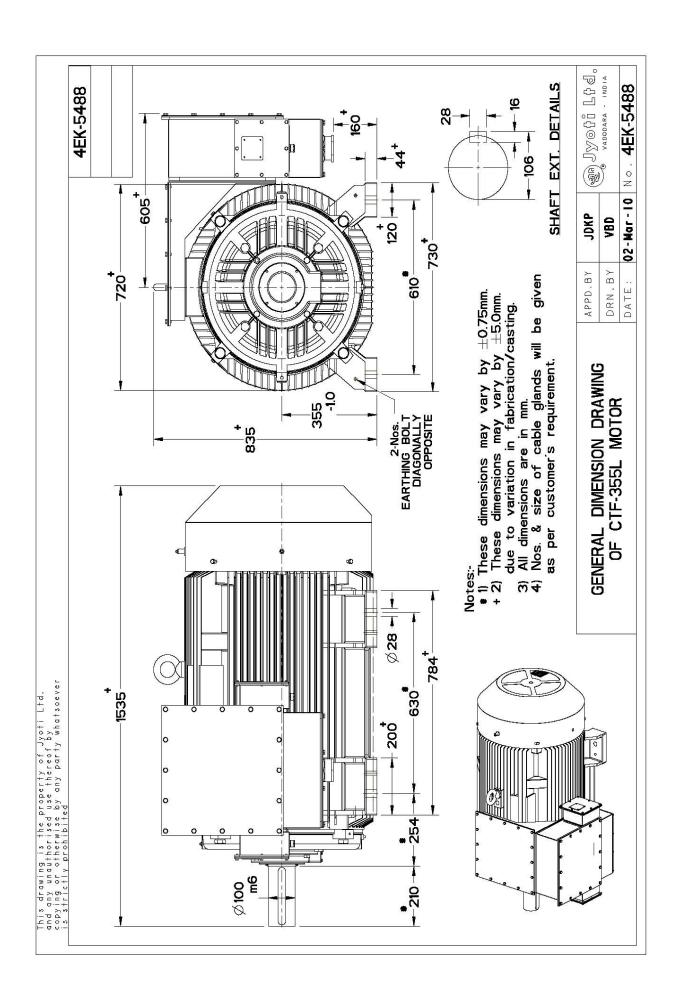

23	~	10		T-W GRP	8 8		301	301	301	302	302	302	302	302	302	302	302	302	302	302	302	302	302	302
: IP-23	: B3	: IC-01		I-N GRP	O N		203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203	203
NOL				T-N GRP	O N		112	112	112	113	113	113	113	113	113	113	113	113	113	113	113	113	113	113
ROTEC ⁻				GD ² KG-	M_2		13.8	13.8	15.0	20.0	24.0	24.0	27.0	27.0	50.0	60.0	64.0	68.0	72.0	75.0	79.0	79.0	85.0	85.0
DEG. OF PROTECTION	MOUNTING	COOLING		WEIGHT	Kg.)	780	780	820	1000	1180	1180	1250	1250	1850	1950	2000	2150	2200	2400	2400	2450	2600	2600
		J		ROTOR CURRENT	AMP.		101	113	150	275	300	316	320	341	331	362	397	426	451	447	469	470	481	485
				ROTOR VOLTAG	ш	VOLTS	400	400	361	240	250	250	280	280	325	330	330	350	370	400	400	425	440	455
. S1	<u>њ</u> 	: 45°C	: 75°C	FL Curren	ţ	AMP	128	143	160	197	224	235	267	285	313	348	381	430	484	519	544	580	614	640
				STOR	20		0.70	0.70	0.72	0.70	0.70	0.70	0.70	0.70	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
	INSULATION	AMB. TEMP.	TEMP. RISE	POWER FACTOR %LOAD	22		0.76	92.0	0.82	0.80	0.80	0.80	08.0	0.80	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
DUTY	INSU	AMB.	TEMF	POW	100		0.80	0.80	0.84	0.84	0.84	0.84	0.85	0.84	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	98.0
)				(%) ل	20		0.68	0.68	0.06	90.5	9.06	91.0	91.5	91.0	91.0	91.0	91.5	91.5	91.5	91.5	91.5	91.5	91.5	91.5
± 10 %	%			EFFICIENCY (%) LOAD	75		90.5	90.5	91.5	92.0	92.0	92.5	93.0	92.5	92.5	92.5	93.0	93.0	93.5	93.5	93.0	93.0	93.0	93.0
: 415 VOLTS ± 10 %	: 50 Hzs. \pm 5 %		%	EFF	100		91.0	91.0	92.0	92.5	92.5	93.0	93.5	93.0	93.0	93.0	93.5	93.5	94.0	94.0	93.5	93.5	93.5	93.5
: 415			T. : ± 10	PL Speed	RPM		926	026	926	975	086	086	086	086	985	<u> </u>	985	<u> </u>	985	985	985	985	<u> </u>	<u> </u>
VOLTAGE	FREQUENCY	\SE	COMB. VARIT. : ± 10 %	Motor Type	WD		280S	280M	280M	315S/M	315M	315M	315L	315L	3558	355M	355L	355L	400S	400M	400M	400M	400L	400L
	FRE	PHASE	Ö	KW			67	75	90	110	125	132	150	160	180	200	220	250	280	300	315	335	355	370

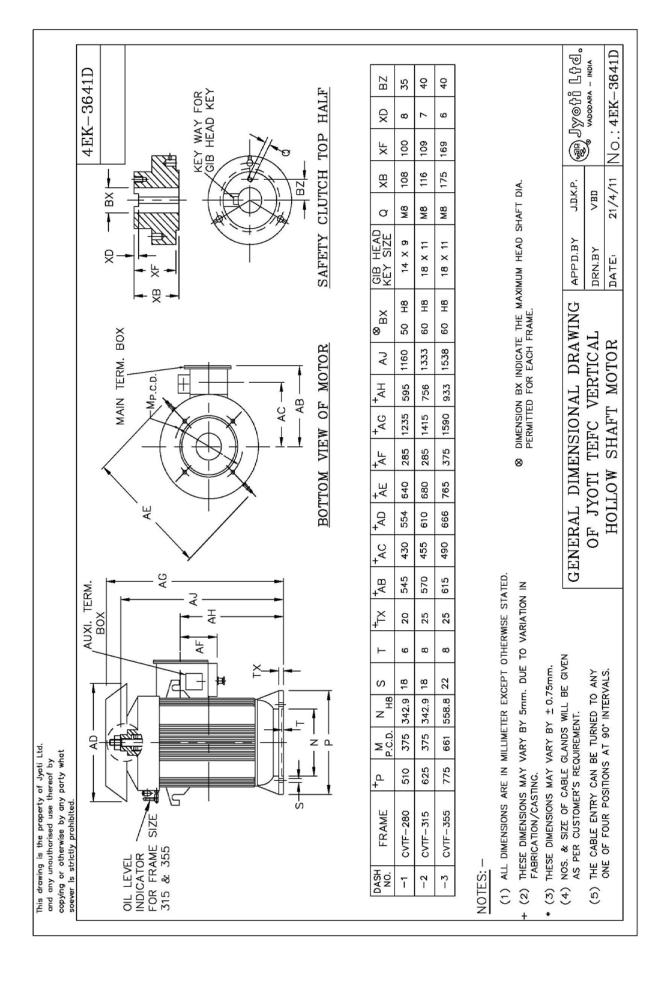
NOTE: THE ABOVE PERFORMANCES ARE SUBJECTED TO TOLERANCES GIVEN IN IS: 325.

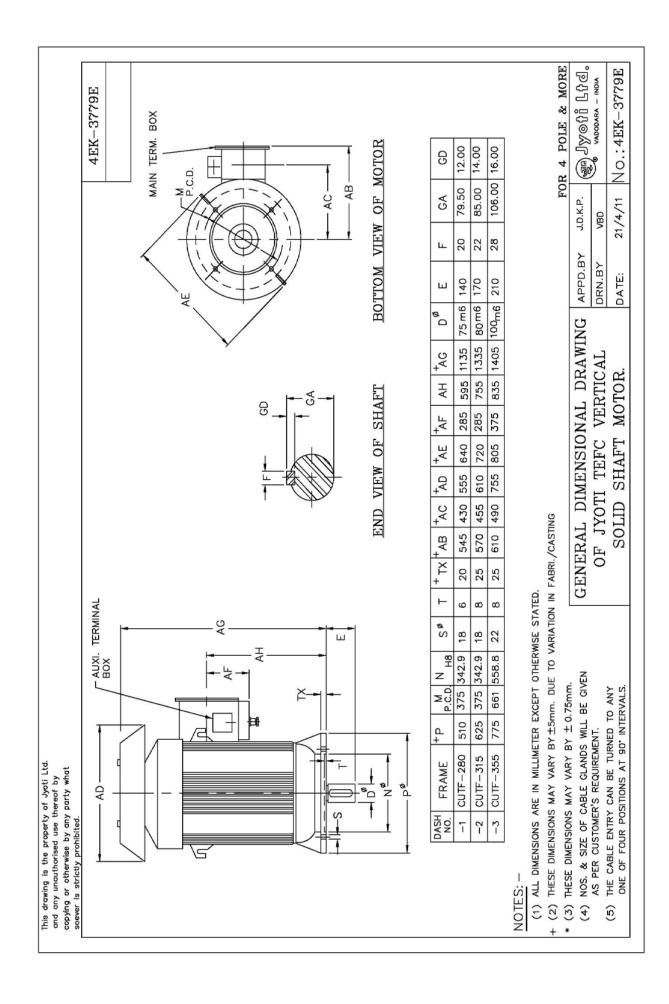
THREADED CENTER HOLES - WITH PROTECTED EDGES

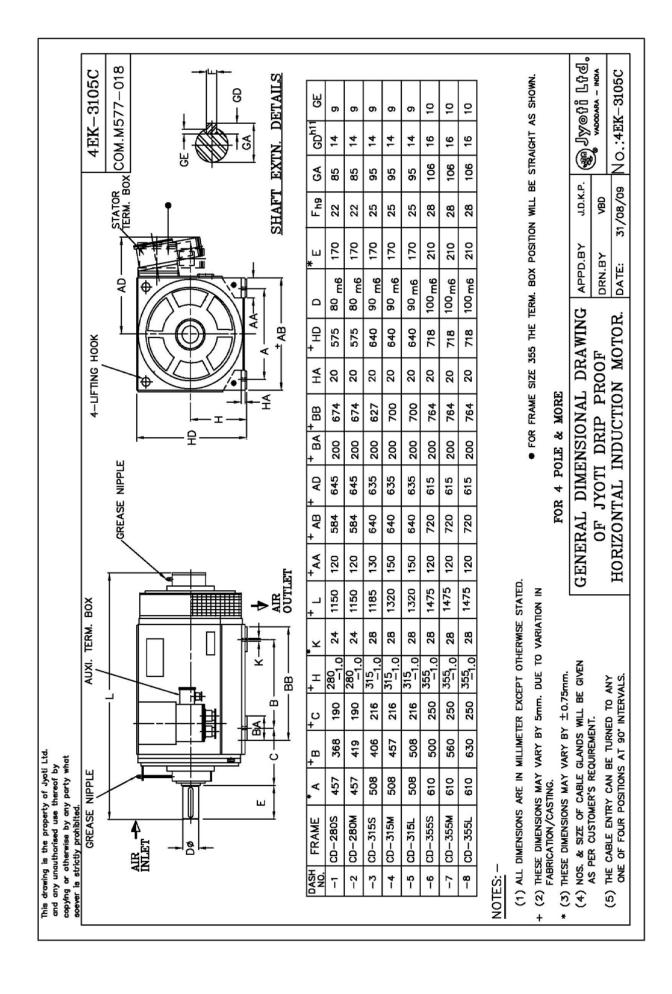
BASIS: - IS: 2540 - 1963

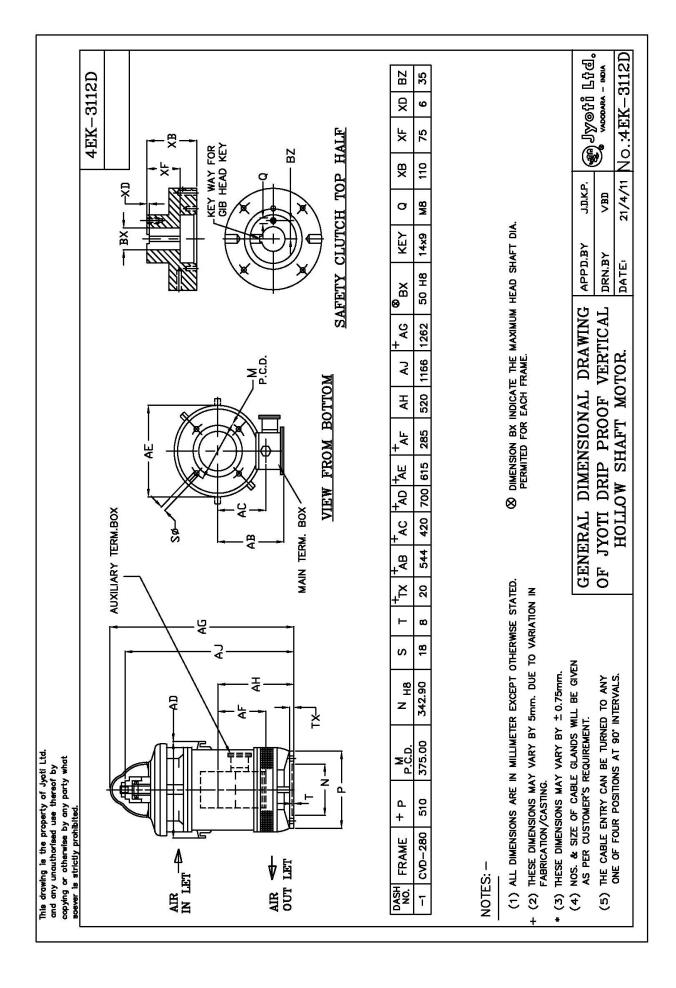
(COMPANY STANDARD NO: W25302)

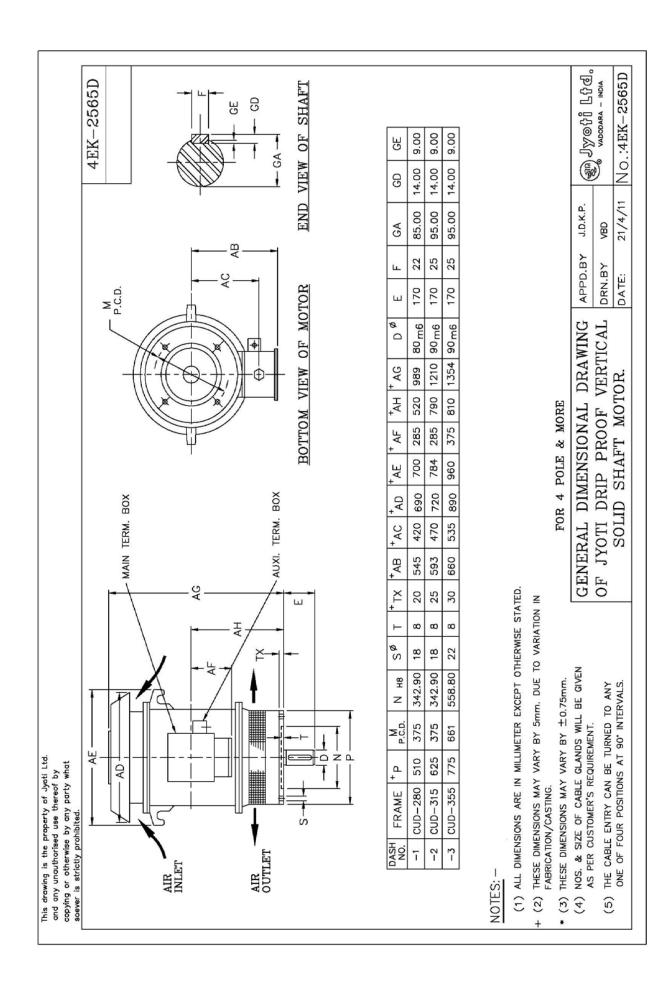


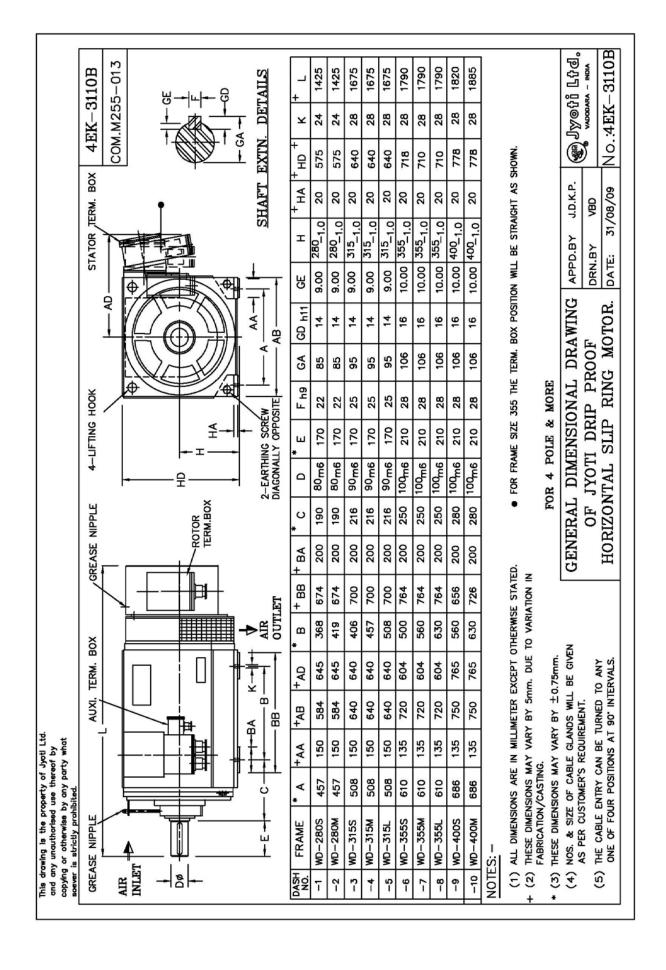

Minimum Shaft Dia D	Nominal Size d	Tapping Drill Size dt	d1	d2	d3	L1	L2	L3	L4
10	M5	4.20	5.3	7.4	9.00	16	12	4.0	0.5
14	M6	5.00	6.4	9.4	11.00	20	16	4.5	0.5
17	M8	6.75	8.4	10.8	14.50	25	20	5.5	1.0
22	M10	8.50	10.5	13.8	17.50	30	24	7.0	1.0
30	M12	10.25	13.0	16.8	20.50	36	28	8.0	1.0
38	M16	14.00	17.0	21.7	28.50	40	32	10.0	2.0
50	M20	17.50	21.0	26.7	33.50	50	40	12.0	2.0
85	M24	21.00	25.0	32.7	39.50	63	50	14.0	2.0
130	M30	26.50	31.0	41.7	48.50	80	65	18.0	2.0

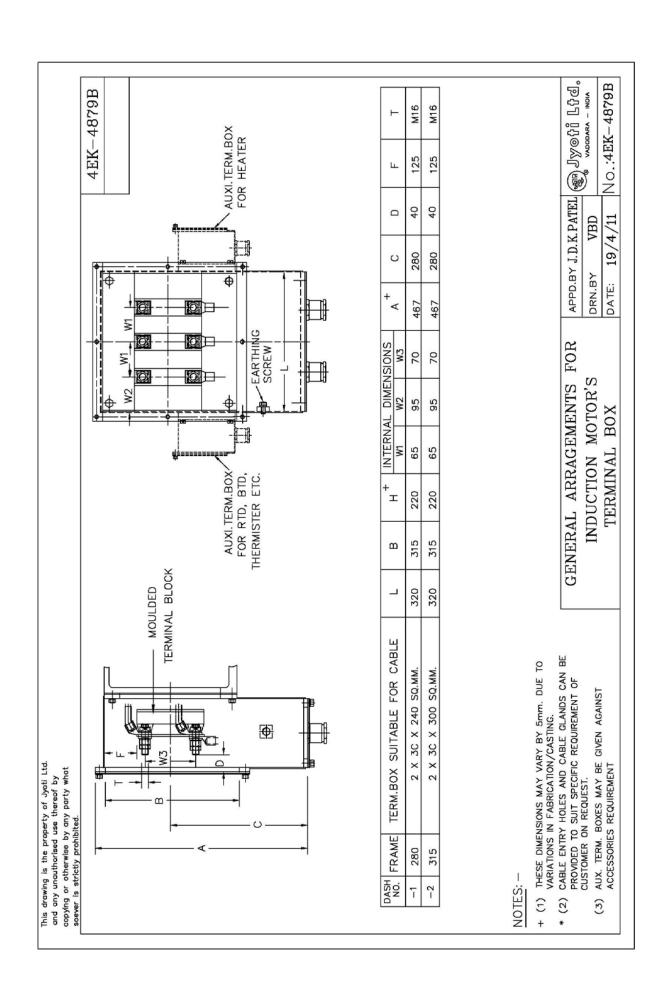

EXAMPLE FOR DESIGNATION: - PROTECTED CENTER HOLE M24 AS PER IS: 2540 - 1963. Instruction for Machine shop: - These threaded center hole can be made by using ordinary twist drill of diameter. d1, d2 & d3 with flat 60° & 120° point respectively.

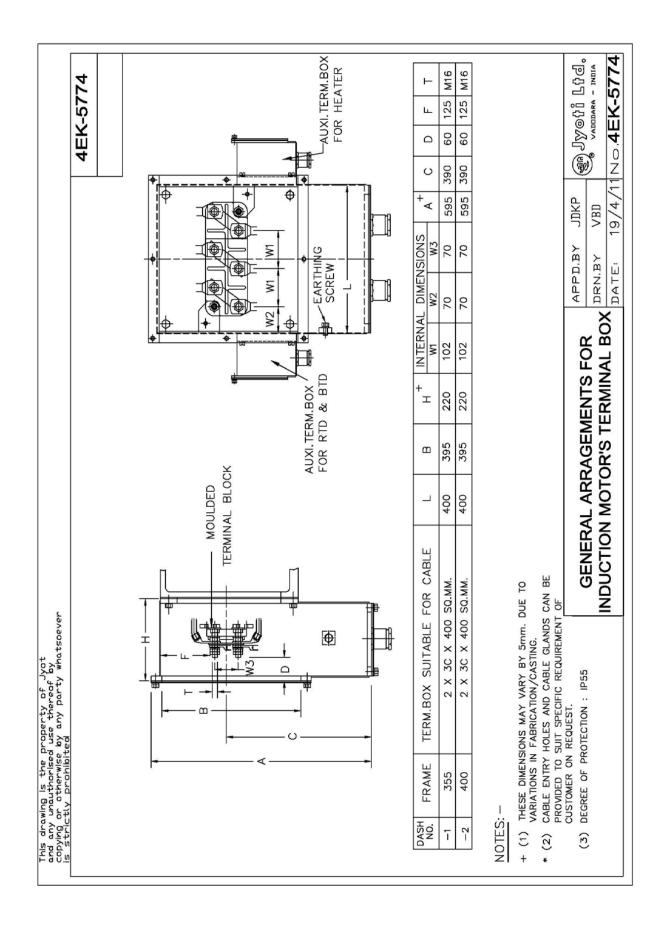

a Jyoti Ltd. No.:4EK-4112C SHAFT EXTN. DETAILS 4EK-4112C 7.00 7.00 7.50 7.50 9.00 7.00 7.00 25 |95.00 | 14.00 | 9.00 95.00 14.00 69.00 11.00 69.00 11.00 79.50 12.00 79.50 12.00 11.00 11.00 G 69.00 69.00 Ğ 20/4/11 J.D.K.P. 8 18 20 25 8 2 18 VBD , MAIN TERM. BOX 170 170 140 140 5 140 140 4 АРР Д.В Ү 65m6 75m6 65m6 90mg DRN,BY 65m6 65m6 75m6 90mg DATE å 932 750 820 모 640 750 820 40 810 932 687 687 GENERAL DIMENSIONAL DRAWING 810 AD 오 640 929 576 715 715 OF JYOTI TEFC HORIZONTAL ¥ 4 35 5 4 4 5 33 INDUCTION MOTOR. 850 490 009 820 999 490 600 999 BB AB g FOR 2 POLE ONLY. 150 160 120 BA 140 4 160 150 120 670 750 780 750 670 PΑ 615 615 780 595 AC 595 720 720 812 652 652 812 820 560 730 730 260 628 628 820 AB 무 ¥ 120 120 120 120 120 160 160 120 1660 1310 1415 1415 1660 1115 1310 (1) ALL DIMENSIONS ARE IN MILLIMETER EXCEPT OTHERWISE STATED. THESE DIMENSIONS MAY VARY BY 5mm. DUE TO VARIATION IN TERM. BOX AUXI. 36 78 36 24 24 28 28 28 ¥ 355.0-1.0 280.0-1.0 315.0-1.0 355.0-1.0 280 400.0-1.0 280 400.0-1.0 280.0-1.0 315.0-1.0 (4) NOS. & SIZE OF CABLE GLANDS WILL BE GIVEN (3) THESE DIMENSIONS MAY VARY BY ±0.75mm. THE CABLE ENTRY CAN BE TURNED TO ANY ONE OF FOUR POSITIONS AT 90' INTERVALS. 190 216 216 254 254 190 AS PER CUSTOMER'S REQUIREMENT. ပ BB М 働 508 368 457 200 260 686 630 110 m This drawing is the property of Jyoti Ltd. copying or otherwise by any party what soever is strictly prohibited. and any unauthorised use thereof by 989 508 508 610 610 457 457 FABRICATION/CASTING. CTF-280M CTF-355M CTF-280S CTF-355S CTF-400M CTF-315M CTF-400L CTF-315L FRAME NOTES: -DASH NO. 4 12 9 8 -7 ī 8 9 + *

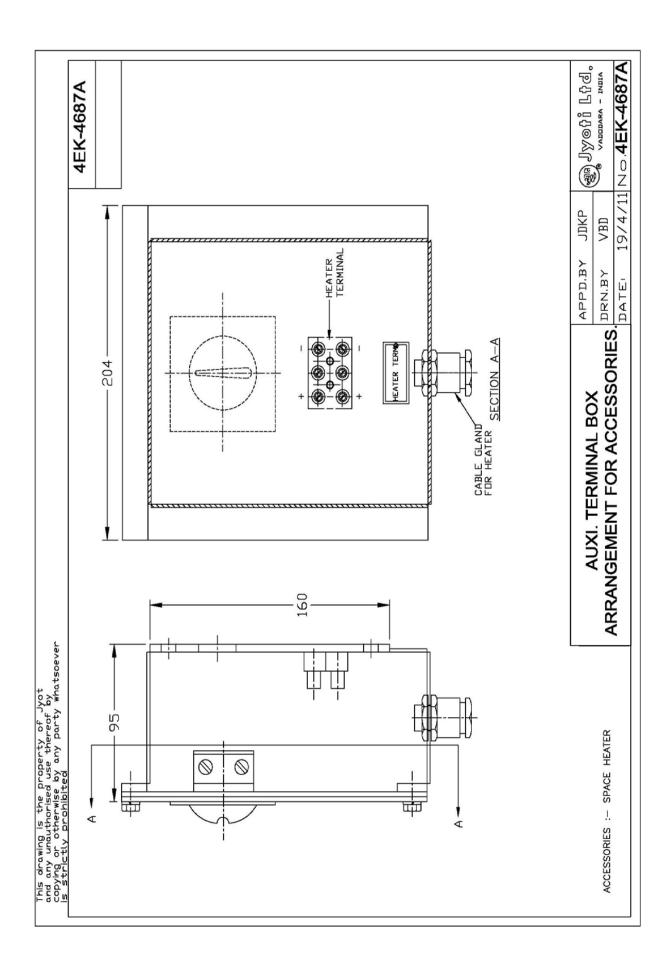

an Inoth Ltd. No.4EK-3521E 10.00 16.00 10.00 7.50 9.00 9.00 16.00 10.00 4EK-3521E DETAILS 14.00 14.00 16.00 12.00 12.00 16.00 GD SHAFT EXTN. 79.50 85.00 106.00 106.00 79.50 85.00 106.00 106.00 GA 21/4/11 J.D.K.P. 28 202 28 28 28 VBD 22 22 MAIN TERM. BOX 210 210 210 140 140 210 170 170 ш APPD.BY DRN.BY 100m6 100m6 100m6 100m6 80m6 75m6 75m6 80m6 DATE: 00 750 820 820 932 687 687 750 932 유 GENERAL DIMENSIONAL DRAWING AD 715 810 OF JYOTI TEFC HORIZONTAL 576 576 오 640 640 810 715 H 35 44 40 40 40 44 40 INDUCTION MOTOR. AB AC 490 999 850 FOR 4 POLE & MORE 900 9 850 009 BB 150 140 140 150 BA 160 160 150 150 615 615 750 780 670 750 780 670 AD 595 595 652 720 720 AB AC 652 812 812 모 모 560 628 628 730 730 820 820 AA 120 120 120 120 120 160 160 + (1) ALL DIMENSIONS ARE IN MILLIMETER EXCEPT OTHERWISE STATED. 1415 1115 1115 1310 1310 1415 1660 1660 THESE DIMENSIONS MAY VARY BY 5mm. DUE TO VARIATION IN TERM. BOX AUXI. 24 28 28 36 28 24 36 28 ¥ 315.0-1.0 355.0-1.0 355.0-1.0 400.0-1.0 280 400.0-1.0 280.0-1.0 280.0-1.0 315.0-1.0 NOS. & SIZE OF CABLE GLANDS WILL BE GIVEN AS PER CUSTOMER'S REQUIREMENT. THESE DIMENSIONS MAY VARY BY ± 0.75mm. THE CABLE ENTRY CAN BE TURNED TO ANY ONE OF FOUR POSITIONS AT 90' INTERVALS. I 254 280 190 216 190 216 254 BB 200 508 **(4)** m 560 BA 368 630 710 419 457 m This drawing is the property of Jyati Ltd. and any unauthorised use thereof by copying or otherwise by any party what soever is strictly prohibited. 508 457 508 610 989 457 610 686 FABRICATION/CASTING. K O CTF-280M CTF-315M CTF-280S CTF-355S CTF-355M CTF-400M CTF-400L CTF-315L FRAME NOTES: -DASH NO. 15 18 . (2) 4-9 ī -2 -7 (3) 4 *

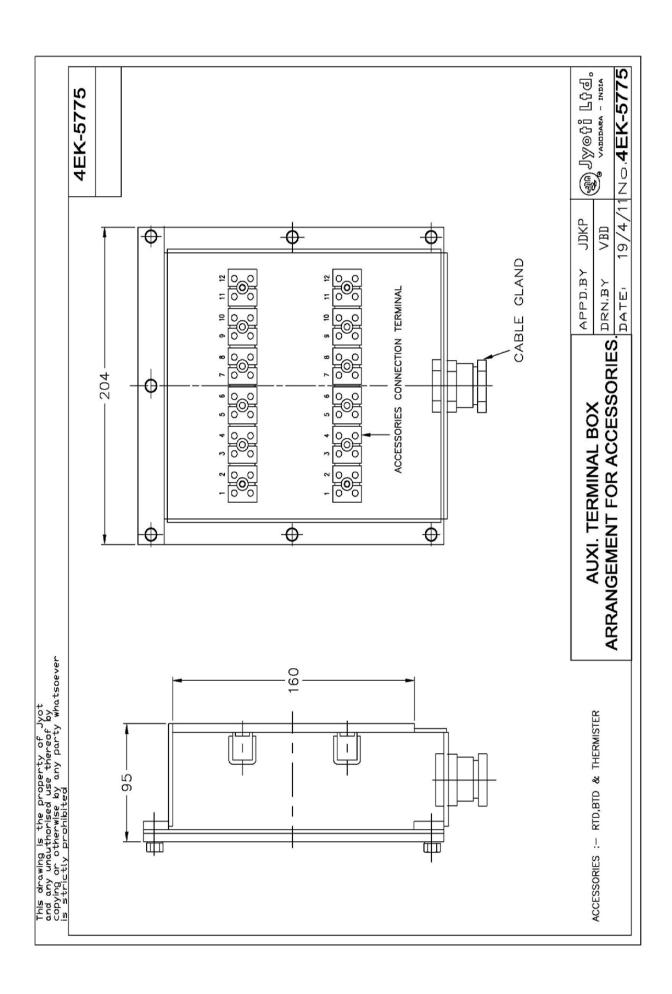









(2) Jyoti Ltd. 40 No.: 4EK-3111C BZ 40 VADODARA - INDIA 4EK-3111C SAFETY CLUTCH TOP HALF KEY WAY FOR GIB HEAD KEY 2 BZ 9 9 125 130 ¥ 175 187 XB 31/08/09 J.D.K.P. BX VBD DIMENSION BX INDICATE THE MAXIMUM HEAD SHAFT DIA. PERMITTED FOR EACH FRAME. M8 MΒ a 18X11 APPD.BY 18X11 KΕΥ DRN.BY DATE: 8H 09 60 HB ⊗ BX MAIN TERM.BOX GENERAL DIMENSIONAL DRAWING OF JYOTI DRIP PROOF VERTICAL + AG 1566 P.C.D. 1731 S VIEW FROM BOTTOM HOLLOW SHAFT MOTOR. + A 810 1599 790 1402 + AH 960 920 370 +TX | +AB | +AC | +AD | +AE | +AF 605 490 815 780 285 AUXILIARY TERM.BOX 8 660 553 (1) ALL DIMENSIONS ARE IN MILLIMETER EXCEPT OTHERWISE STATED. (2) THESE DIMENSIONS MAY VARY BY 5mm. DUE TO VARIATION IN 25 30 œ ω S 18 22 (4) NOS. & SIZE OF CABLE GLANDS WILL BE GIVEN AS PER CUSTOMER'S REQUIREMENT. (3) THESE DIMENSIONS MAY VARY BY ±0.75mm. THE CABLE ENTRY CAN BE TURNED TO ANY ONE OF FOUR POSITIONS AT 90' INTERVALS. 모 모 558.80 342.90 × 375.00 661.00 P.C.D. This drawing is the property of Jyoti Ltd. and any unauthorised use thereof by copying or otherwise by any party what FABRICATION/CASTING. 775 625 + soever is strictly prohibited. CVD-315 CVD-355 FRAME AIR T AIR A NOTES: -DASH NO. -2 ī (2)



This drawing is the property of Jyoti Ltd. and any unauthorised use thereof by copying or any party what	
	4EK-3835A COM.M255-016
L	DE/TOP BRG. NDE/BTM.BRG. DE/TOP BRG. NDE/BT
NAME PLATE FOR INDUCTION MOTOR.	APPD.BY J.D.K.P. இறிற்றிற்றி நிறிவின் DRN.BY S.C.P. DATE: 10/08/99 NO.4EK-3835A
10/08/99	

RECOMMENDED SPARES

DESCRIPTION	RECOMME	ENDED MINIMU	ЈМ ЅТОСК
OF	NUMBER OF UNITS IN OPERATION		
PARTS	1 to 4	5 to 9	10 to 20
Bearings	1 set	2 set	4 set
Space heaters	1 set	2 set	4 set
Thermistors / RTD / BTD	1 set	2 set	4 set
Sliprings *	1 set	1 set	2 set
Brushes *	1 set	2 set	4 set
Brushes holders *	1 set	2 set	4 set
Oil seals / Leap seal	1 set	2 set	4 set
Dial type thermometer	1 set	2 set	4 set

^{*} As applicable to slipring motors only.

SHIPPING DIMENSIONS & WEIGHTS

FRAME SIZE	L (cm)	B (cm)	H (cm)	WEIGHT (kg)
CTF - 280 S	122	102	74	850
CTF - 280 M	122	102	74	900
CTF - 315 S	129	116	80	1140
CTF - 315 M	141	115	81	1250
CTF - 315 L	141	115	81	1400
CTF - 355 S	150	125	84	1750
CTF - 355 M	150	125	84	1800
CTF - 400 L	180	128	100	2700
CVTF - 280	88	75	130	880
CVTF - 315	97	81	147	1450
CVTF - 355	115	93	167	2500
		Principal Control		
CUTF - 280	107	82	162	1500
CUTF - 315	115	93	190	2650
CUTF - 355	128	105	182	2750
CD - 280 S	125	105	68	830
CD - 280 M	125	105	68	970
CD - 315 S	143	114	70	1050
CD - 315 M	143	114	70	1200
CD - 315 L	143	114	70	1500
CD - 355 S	160	114	79	1950
CD - 355 M	160	114	79	2150
CD - 355 L	160	114	79	2250

CVD - 280	110	83	133	1100
CVD - 315	114	110	161	1750
CVD - 355	129	116	181	2300
CUD - 280	99	83	132	1150
CUD - 315	112	91	140	1800
CUD - 355	121	111	157	2400
WD - 280 S	153	107	65	880
WD - 280 M	153	107	65	950
WD - 315 S	174	110	76	1200
WD - 315 M	174	110	76	1400
WD - 315 L	174	110	76	1500
WD - 355 S	190	111	76	2100
WD - 355 M	190	111	76	2250
WD - 355 L	190	111	76	2400
WD - 400 S	194	115	85	2400
WD - 400 M	194	115	85	2600
WD - 400 L	194	115	85	2850

DEFINITIONS AND FORMULAS

DEFINITIONS:

1) Continuous Max. Rating (S1):-It is the shaft load in kW which motor can carry continuously

Without or CMR exceeding temperature rise limit.

2) Efficiency (η):-It is the ratio of output (kW) to input (kW) for a given loading

condition.

Power factor (PF): -It is the ratio of input (kW) to input (kVA) for a given loading

condition.

It is the open circuit voltage at standstill, measured across the 3) Rotor voltage of slipring motor (RV):-

with rated voltage applied to stator winding.

4) Rotor current of It is the current flowing through rotor winding and slipring at

rated slipring motor (RA):load with slipring shorted.

It is the torque (% of full load torque) which motor will 5) Starting torque (Tst):-

develop at rest with rated voltage and frequency applied to

stator winding.

6) Starting current (Ist):-It is the steady state current (% of full load current) which

Motor will draw at rest with rated voltage and frequency

applied to stator winding.

7) Pull out torque (Tmax):-It is the maximum torque (% of full load torque) which motor

will develop, without an abrupt drop in speed with rated

voltage and frequency applied to stator winding.

8) Full load torque (FLT):-It is the torque (Kg-M) developed by the motor delivering

Rated load with rated voltage and frequency applied to stator

winding.

9) Full load current (FLC):-It is the current (Amp) drawn by the motor delivering rated

Load with rated voltage and frequency applied to stator

Winding.

10) Full load speed (FLS): -It is the speed (RPM) of rotation of the motor delivering

Rated load at rated voltage and frequency.

11) Moment of inertia (GD²):-It is the mass moment of inertia (in Kg -m²) of rotating parts

of the motor.

Note:

For definition of other terminologies please refer IS-1885 pt.35

> FORMULAS

kW x 1000

Ns

2) % Efficiency (
$$\eta$$
) =
$$\frac{\text{kW (Output) x 100}}{\text{kW (Input)}}$$

3) Power factor PF(pu) =
$$\frac{kW(Input) \times 1000}{1.732 \times VOLT \times IFL}$$

5) Full load speed N (RPM) =
$$\frac{\text{Ns x } (1 - \text{S})}{100}$$
6) Full load slip S(%) =

9) Power output of motor

For pump drives the required power output of the motor is determined by substituting the product of the pump capacity and the manometric lifting head for the product F.V giving
$$\frac{1000 \text{ x Q x v x H}}{1000 \text{ x Q x v x H}} \qquad Q = \text{Capacity of the pump (m}^3 \text{ s)}$$

$$\text{V = Sp.Wt. of the liquid kg/m}^3$$

$$102 \text{ x } \eta \qquad \text{H = Total head of liquid(m)}$$

d) With lifts the weight of the cage & half of the useful load are balanced by counter-weight.

$$P (kW) = \frac{F \times V}{2 \times 102 \times \eta}$$
 V = Velocity in (m/s)

e) In case of fans
$$P(kW) = \frac{Q \times p}{102 \times \eta}$$
 $p = Air back - pressure at the outlet in mm of a column of water $(kg/m^2 = 0.00142 \ PSI)$$

SPECIFICATION OF INDUCTION MOTORS

A) <u>GENERAL:</u>

1)	Type of rotor	Squirrel cage / Slip ring
2)	Rated Power Output (kW)	0.55 kW to 5000 kW
3)	Synchronous speed (RPM)	3000 / 1500 / 1000 / 750 etc.
4)	Type of Enclosure	Drip proof / TEFC / CACA / CACW
5)	Degree of Protection	IP-23, IP -44 & IP-55
6)	Method of Cooling	IC -01/IC-411/IC-161 etc.
7)	Method of Mounting	B3 - Horizontal foot mounted V1 - Vertical flange mounted etc.
8)	Frame size	71 to 1100
9)	Class of Insulation	F/H
10)	Type of Duty	S1- Continuous.
11)	No. of phases	3
12)	Rated Voltage (Volts)	415 / 3300 / 6600 / 11000
13)	Rated Frequency (Hz)	50
14)	Variation in Voltage	$\pm 6 \%$ or $\pm 10 \%$ or $+ 6 \%$, -15%
15)	% Variation in Frequency	± 3 % or ± 5 %
16)	% Combined Voltage & Frequency Variation	$\pm 6 \%$ or $\pm 10 \%$
17)	Winding Connection - stator & rotor	Star or Delta
18)	Terminals	Three or Six
19)	Power cable Type / Run / Size	As per client requirement
20)	Method of Earthing	2 nos. diagonally opposite
21)	Permissible Temperature Rise	Limited to B
22)	Minimum Starting Voltage across the terminal	85 % of rated voltage
23)	Method of Starting	DOL / Star - Delta / Auto Trans. etc.
24)	Direction of Rotation	Clockwise / Anti clockwise looking
25)	Type of Coupling	from shaft side / Both direction Flexible for solid shaft motor rigid for hollow shaft motor.
26)	Shaft orientation	Horizontal / Vertical etc.
27)	Noise level at one meter distance	As per is: 12065.
28)	Vibration Level	As per is: 12075
29) 30)	Terminal box position Fault withstand capability of terminal box	Right hand side looking from coupling end 45 MVA / 250 MVA / 350 MVA etc.
31)	Duration of fault	0.25 Second

32)	Type of slip ring gear	Fixed
33)	No. Of starts per hour	
	a) Equally spread starts	3
	b) Hot starts	1
	c) Cold starts	2
34)	Bearing	
	a) Drive End side / Top side	Ball or Rollar bearing or Thrust Bearing
	b) Non drive end/ Bottom side	Ball or Rollar bearing
35)	Lubrication	
	a) Drive End side / Top side	Lithium base Grease or Oil
	b) Non drive end/ Bottom side	Lithium Base Grease or Oil
36)	Reference standard	IS: 325 / IEC 34 -1
SITE	E CONDITIONS:	
1)	Ambient Temperature (°C)	45 °C
2)	Altitude (Meters)	Up to 1000 m
3)	Maximum Humidity (%)	50 % for drip proof machine 100 % for TEFC & CACA, CACW
4)	Installation	Location - Outdoor / Indoor
5)	Atmospheric Condition	Non Hazardous
6)	Paints & Treatments	Colour - Shade no. 621 of IS 5
ACC	CESSORIES:	
1)	Space Heaters	Optional
2)	Thermistors	Optional
For N	Motors above 280 Frame	
3)	Winding - RTD	Optional - 100Ω at $0 ^{\circ}\text{C}$ Simplex
4)	Bearing - RTD	Optional - 100Ω at $0 ^{\circ}\text{C}$ Simplex
5)	Dial type Thermometer for Bearing	Optional for Vertical Hollow shaft motor
6)	Breather plug	Optional for Totally enclosed motor
7)	Terminal Box for accessories	Optional
8)	If any Special Requirements	Optional

C)

F)

QUESTIONNAIRE FOR 3 PHASE INDUCTION MOTORS

(FOR ENQUIRY / TENDER / ORDER)

A) **GENERAL:**

- 1) Project Name
- 2) No. Of Motor required
- 3) Type of Motor (Squirrel Cage / Slipring)
- 4) Rated Power Output (kW)
- 5) Speed (RPM) / No. of Poles
- 6) Type of Enclosure
- 7) Degree of Protection
- 8) Method of Cooling
- 9) Method of Mounting
- 10) Class of Insulation
- 11) Type of Duty
- 12) Noise level at one metre distance
- 13) Vibration Level
- 14) Power cable Type / Run / Size

B) <u>SUPPLY CONDITIONS</u>:

- 1) Rated Voltage (Volts)
- 2) Rated Frequency (Hz)
- 3) Variation in Voltage (%)
- 4) Variation in Frequency (%)
- 5) Combined Voltage & Frequency Variation (%)
- 6) Minimum Starting Voltage across the terminal
- 7) Method of Starting

C) <u>SITE CONDITIONS:</u>

- 1) Ambient Temperature (°C)
- 2) Altitude (Meters)
- 3) Maximum Humidity (%)
- 4) Installation (Location- Outdoor/Indoor)
- 5) Atmospheric Condition
- 6) Permissible Temperature Rise

D) DRIVEN EQUIPMENT DETAILS:

- 1) Type of given Equipment
- 2) Torque Speed characteristic of Driven Equipment
- 3) Moment of Inertia (GD²) Driven Equipment / Reference Speed
- 4) Direction of Rotation
- 5) Crank Angle / Torque Diagram for compressor application
- 6) Current Pulsation allowed for compressor application
- 7) Type of Coupling (Flexible / Rigid)
- 8) Thrust load applicable on motor bearing
- 9) Pulley / Belt detail

E) <u>ACCESSORIES:</u>

- 1) Space Heaters
- 2) Thermistors
- 3) RTD Winding / Bearing (Simplex / Duplex)
- 4) If any Special Requirements

QUESTIONNAIRE REFERANCE FOR INDUCTION MOTORS

(DURING ENQUIRY / ORDER)

A) **GENERAL**:

1)	Project	Name
----	---------	------

2) No. Of Motor required (Qty.)

3) Type of Motors4) Type of rotorLT Motor / HT MotorSquirrel cage / Slip ring

5) Rated Power Output (KW)

6) Synchronous speed (RPM) 3000 / 1500 / 1000 / 750

7) Type of Enclosure Drip proof / TEFC / CACA / CACW
8) Degree of Protection IP-21/ IP -22 / IP - 23 / IP -44/ IP-55

9) Method of Cooling IC -01/IC-411/IC-161 etc.

10) Method of Mounting B3 - Horizontal foot mounted V1 - Vertical flange mounted etc.

11) Class of Insulation B / F / H

12) Type of Duty S1- Continuous / S2 - Short time/ S3

13) Noise level at one metre distance As per is: 12065. ---- db(A) AT 1 M.

14) Vibration Level As per is: 12075

15) Power cable Type / Run / Size

16) Method of Earthing 2 nos. Bolts / Flats

16) Reference standard IS: 325 / IEC 34 -1 / NEMA

B) SUPPLY CONDITIONS:

1) No. of phases 3

2) Rated Voltage (Volts) 415 / 3300 / 6600 / 11000

3) Rated Frequency (Hz) 50 / 60

4) Variation in Voltage $\pm 6 \% / \pm 10 \% / + 6 \%, -15 \%$

5) % Variation in Frequency $\pm 3 \% / \pm 5 \%$

6) % Combined Voltage & Frequency Variation± 6 % / ± 10 %

7) Minimum Starting Voltage across the terminal 80 % / 85 %

8) Method of Starting DOL /Star-Delta /Auto Trans./ Soft start

C) SITE CONDITIONS:

1) Ambient Temperature (°C) 40 °C / 45 °C / 50 °C / 55 °C

2) Altitude (Metres) below 1000 m / 2000 m / 3000 m etc.

3) Maximum Humidity (%) 80 % / 90 % / 100 %

4) Installation Location- Outdoor/Indoor

5) Atmospheric Condition Non Hazardous / Hazardous

6) Permissible Temperature Rise Limited to B / F

D) DRIVEN EQUIPMENT DETAILS

1) Type of driven Equipment

2) Torque Speed characteristic of Starting Torque, Pull out Torque Driven Equipment Pull up Torque etc.

Moment of Inertia (GD²) of Driven
 Equipment at Reference Speed

4) Direction of Rotation Clockwise / Anti clockwise looking from shaft side / both direction

5) Crank Angle / Torque Diagram for compressor duty

6) Current Pulsation allowed for compressor application

7) Type of Coupling Flexible / Rigid / Fluid / Belt etc.

8) Pulley / Belt details Diameter, width

Force acting at the point where applied. Axial Force & Radial force (kg)
 Thrust load applicable on motor bearing Upward & downward thrust (kg)

11) Shaft orientation Horizontal / Vertical etc.

E) SPECIAL FEATURES:

1) Winding Connection Star / Delta

2) Terminals Three / Six

3) Type of slip ring gear Fixed / Brush lifting arrangement

4) Terminal box position Left / Right hand side looking from

Coupling end

5) Fault withstand capability of terminal box 45 MVA / 250 MVA / 350 MVA etc.

6) Duration of fault 0.25 Second

7) Shaft extension details Diameter & length / Tapered/Threaded

8) Paints & Treatments Colour - Shade no. 621 of IS 5 Normal / Epoxy / Special paint

F) ACCESSORIES:

1) Space Heaters

2) Thermistors

3) Winding - RTD PT-100 / 100 Ω at 0 °C Simplex/Duplex

4) Bearing - RTD PT-100 / 100 Ω at 0 °C Simplex/Duplex

5) Dial type Thermometer for Bearing

6) Breather plug

7) Terminal Box for accessories

8) If any Special Requirements